首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
  2019年   1篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2009年   5篇
  2008年   2篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2000年   2篇
  1997年   2篇
  1994年   2篇
  1991年   1篇
排序方式: 共有42条查询结果,搜索用时 437 毫秒
1.
Experiments on life history genetics are usually performed using constant temperature environments in the laboratory. However, the dynamics of insect growth can be influenced profoundly by daily fluctuations in temperature such as those which characterize field environments. We report here on experiments using different stocks and selected lines of a tropical butterfly, Bicyclus anynana, to examine whether genotype-environment interactions occur for three traits describing pre-adult growth. These traits were measured over two pairs of environments differing in mean temperature, each of which had a constant, and a cycling temperature regime. Development time, pupal weight and growth rate show genotype-environment interactions, especially at comparatively low average temperatures. Researchers should, therefore, take care when extrapolating from the form of genetic covariance matrices and ''trade-offs'' among life history traits found in constant temperature environments to those likely to occur in nature. <br>  相似文献   
2.
3.
Although the temperature‐size rule, that is, an increase in egg (and body) size at lower temperatures, applies almost universally to ectotherms, the developmental mechanisms underlying this consistent pattern of phenotypic plasticity are hitherto unknown. By investigating ovarian dynamics and reproductive output in the tropical butterfly Bicyclus anynana (Butler) (Lepidoptera: Nymphalidae: Satyrinae) in relation to oviposition temperature and mating status, we tested the relevance of several competing hypotheses for temperature‐mediated variation in egg size and number. As expected, females ovipositing at a lower temperature laid fewer but larger eggs than those ovipositing at a higher temperature. Despite pronounced differences in egg‐laying rates, oocyte numbers were equal across temperatures at any given time, while oocyte size increased at the lower temperature. In contrast, there were greatly reduced oocyte numbers in mated compared to virgin females. Our results indicated that temperature‐mediated plasticity in egg size cannot be explained by reduced costs of somatic maintenance at lower temperatures, enabling the allocation of more resources to reproduction (reproductive investment was higher at the higher temperature). Furthermore, there was no indication for delayed oviposition (no accumulation of oocytes at the lower temperature, in contrast to virgin females). Rather, low temperatures greatly reduced the oocyte production (i.e., differentiation) rate and prolonged egg‐maturation time, causing low egg‐laying rates. Our data thus suggested that oocyte growth is less sensitive to temperature than oocyte production, resulting in a lower number of larger eggs at lower temperatures.  相似文献   
4.
Abstract.— We investigated the effects of inbreeding on various fitness components and their genetic load in laboratory metapopulations of the butterfly Bicyclus anynana . Six metapopulations each consisted of four subpopulations with breeding population sizes of N = 6 or N = 12 and migration rate of m = 0 or m = 0.33. Metapopulations were maintained for seven generations during which coancestries and pedigrees were established. Individual inbreeding coefficients at the F7 were calculated and ranged between 0.01 and 0.51. Even though considerable purging had occurred during inbreeding, the genetic load remained higher than that of many outbreeding species: approximately two lethal equivalents were detected for egg sterility, one for zygote survival, one for juvenile survival, and one for longevity. Severe inbreeding depression occurred after seven generations of inbreeding, which jeopardized the metapopulation survival. This finding suggests that the purging of genetic load by intentional inbreeding cannot be recommended for the genetic conservation of species with a high number of lethal.  相似文献   
5.
Fixed, genetically determined, mate preferences for species whose adult phenotype varies with rearing environment may be maladaptive, as the phenotype that is most fit in the parental environment may be absent in the offspring environment. Mate preference in species with polyphenisms (environmentally dependent alternative phenotypes) should therefore either not focus on polyphenic traits, be polyphenic themselves, or learned each generation. Here, we test these alternative hypotheses by first describing a female‐limited seasonal polyphenism in a sexually dimorphic trait in the butterfly Bicyclus anynana, dorsal hindwing spot number (DHSN), and then testing whether male and female mate preferences for this trait exist, and whether they are seasonally polyphenic, or learned. Neither naïve males nor naïve females in either seasonal form exhibited mating preferences for DHSN. However, males, but not females, noticed DHSN variation and learned mate preferences for DHSN. These results suggest that individuals may accommodate environmentally dependent variation in morphological traits via learned mate preferences in each generation, and that learned mate preference plasticity can be sexually dimorphic.  相似文献   
6.
Many species of lepidopterans supplement their nectar diet with foods rich in nitrogen and minerals, which are present only in trace amounts in nectar. We examined the effect of adult diet on mating behaviour and spermatophore characteristics in male Bicyclus anynana (Butler, 1879) butterflies, which feed on rotten fruits as adults. We found little effect of adult diet on male reproduction in terms of mating rate and sperm production, although males fed on fruit produced larger spermatophores on their first mating compared to males fed sugar only. We also examined how males allocate sperm across matings. Males ejaculate larger spermatophores during their first mating, and produce spermatophores containing decreasingly fewer non-fertile sperm with number of matings performed. Males that produced more non-fertile sperm on their first mating had reduced lifespan possibly indicating a trade-off between sperm production and adult longevity. It is suggested that adult diet has little affect on male ejaculate production and males feed on fruit to supplement their energetic carbon requirements.  相似文献   
7.
Marcus JM  Evans TM 《Bio Systems》2008,93(3):250-255
The color patterns on the wings of butterflies have been an important model system in evolutionary developmental biology. A recent computational model tested genetic regulatory hierarchies hypothesized to underlie the formation of butterfly eyespot foci [Evans, T.M., Marcus, J.M., 2006. A simulation study of the genetic regulatory hierarchy for butterfly eyespot focus determination. Evol. Dev. 8, 273-283]. The computational model demonstrated that one proposed hierarchy was incapable of reproducing the known patterns of gene expression associated with eyespot focus determination in wild-type butterflies, but that two slightly modified alternative hierarchies were capable of reproducing all of the known gene expressions patterns. Here we extend the computational models previously implemented in Delphi 2.0 to two mutants derived from the squinting bush brown butterfly (Bicyclus anynana). These two mutants, comet and Cyclops, have aberrantly shaped eyespot foci that are produced by different mechanisms. The comet mutation appears to produce a modified interaction between the wing margin and the eyespot focus that results in a series of comet-shaped eyespot foci. The Cyclops mutation causes the failure of wing vein formation between two adjacent wing-cells and the fusion of two adjacent eyespot foci to form a single large elongated focus in their place. The computational approach to modeling pattern formation in these mutants allows us to make predictions about patterns of gene expression, which are largely unstudied in butterfly mutants. It also suggests a critical experiment that will allow us to distinguish between two hypothesized genetic regulatory hierarchies that may underlie all butterfly eyespot foci.  相似文献   
8.
In insects, forewings and hindwings usually have different shapes, sizes, and color patterns. A variety of RNAi experiments across insect species have shown that the hox gene Ultrabithorax (Ubx) is necessary to promote hindwing identity. However, it remains unclear whether Ubx is sufficient to confer hindwing fate to forewings across insects. Here, we address this question by over-expressing Ubx in the butterfly Bicyclus anynana using a heat-shock promoter. Ubx whole-body over-expression during embryonic and larvae development led to body plan changes in larvae but to mere quantitative changes to adult morphology, respectively. Embryonic heat-shocks led to fused segments, loss of thoracic and abdominal limbs, and transformation of head limbs to larger appendages. Larval heat-shocks led to reduced eyespot size in the expected homeotic direction, but neither additional eyespots nor wing shape changes were observed in forewings as expected of a homeotic transformation. Interestingly, Ubx was found to be expressed in a novel, non-characteristic domain – in the hindwing eyespot centers. Furthermore, ectopic expression of Ubx on the pupal wing activated the eyespot-associated genes spalt and Distal-less, known to be directly repressed by Ubx in the fly?s haltere and leg primordia, respectively, and led to the differentiation of black wing scales. These results suggest that Ubx has been co-opted into a novel eyespot gene regulatory network, and that it is capable of activating black pigmentation in butterflies.  相似文献   
9.
The origin and diversification of evolutionary novelties-lineage-specific traits of new adaptive value-is one of the key issues in evolutionary developmental biology. However, comparative analysis of the genetic and developmental bases of such traits can be difficult when they have no obvious homologue in model organisms. The finding that the evolution of morphological novelties often involves the recruitment of pre-existing genes and/or gene networks offers the potential to overcome this challenge. Knowledge about shared developmental processes obtained from extensive studies in model organisms can then be used to understand the origin and diversification of lineage-specific structures. Here, we illustrate this approach in relation to eyespots on the wings of Bicyclus anynana butterflies. A number of spontaneous mutations isolated in the laboratory affect eyespots, lepidopteran-specific features, and also processes that are shared by most insects. We discuss how eyespot mutants with disturbed embryonic development may help elucidate the genetic pathways involved in eyespot formation, and how venation mutants with altered eyespot patterns might shed light on mechanisms of eyespot development.  相似文献   
10.
Phenotypic plasticity may allow an organism to adjust its phenotype to environmental needs. However, little is known about environmental effects on offspring biochemical composition and turnover rates, including energy budgets and developmental costs. Using the tropical butterfly Bicyclus anynana and employing a full-factorial design with two oviposition and two developmental temperatures, we explore the consequences of temperature variation on egg and hatchling composition, and the associated use and turnover of energy and egg compounds. At the lower temperature, larger but fewer eggs were produced. Larger egg sizes were achieved by provisioning these eggs with larger quantities of all compounds investigated (and thus more energy), whilst relative egg composition was rather similar to that of smaller eggs laid at the higher temperature. Turnover rates during embryonic development differed across developmental temperatures, suggesting an emphasis on hatchling quality (i.e. protein content) at the more stressful lower temperature, but on storage reserves (i.e. lipids) at the higher temperature. These differences may represent adaptive maternal effects. Embryonic development was much more efficient at the lower temperature, providing a possible mechanism underlying the temperature-size rule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号