首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2016年   1篇
  2012年   1篇
  2009年   3篇
  2008年   2篇
  2006年   1篇
  2001年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Bestrophin, an integral membrane protein existing in basolateral region of the retina is a propitious target for drug discovery. Mutations in the Bestrophin protein cause Best Vitelliform Macular Dystrophy (BVMD) leading to retinal damages and loss of visual acuity. Owing to the lack of three dimensional structure and related structural homologs in the protein data bank, we modeled the bestrophin protein using Robetta ab initio method. Further, no treatment is available for the disease. In this situation, anthocyanins from natural sources are reported to combat retinal damages. Hence, we identified anthocyanins from Syzygium cumini fruit skin using Electrospray Ionization tandem mass spectrometry. These compounds were docked into the predicted bestrophin model to study the interactions within the active site. The results may provide a valuable insight into the structure of bestrophin and efficacy of anthocyanins in molecular docking studies.

Abbreviations

PTP - Putative transmembrane proteins, VMD - Vitelliform macular dystrophy, BVMD - Best''s vitelliform macular dystrophy, RPE - Retinal pigment epithelium, ESI-MS/MS - Electrospray Ionization Tandem Mass Spectrometry, UNIPROT - Universal Protein Resource, PSIPRED - Protein secondary structure prediction, TMH - Transmembrane Helices, SCFS - Syzygium cumini fruit skin DP - Declustering Potential IFD - Induced Fit Docking.  相似文献   
2.
In the past, a number of candidates have been proposed to form Ca2+ activated Cl currents, but it is only recently that two families of proteins, the bestrophins and the TMEM16-proteins, recapitulate reliably the properties of Ca2+ activated Cl currents. Bestrophin 1 is strongly expressed in the retinal pigment epithelium, but also at lower levels in other cell types. Bestrophin 1 may form Ca2+ activated chloride channels and, at the same time, affect intracellular Ca2+ signaling. In epithelial cells, bestrophin 1 probably controls receptor mediated Ca2+ signaling. It may do so by facilitating Ca2+ release from the endoplasmic reticulum, thereby indirectly activating membrane localized Ca2+-dependent Cl channels. In contrast to bestrophin 1, the Ca2+ activated Cl channel TMEM16A (anoctamin 1, ANO1) shows most of the biophysical and pharmacological properties that have been attributed to Ca2+-dependent Cl channels in various tissues. TMEM16A is broadly expressed in both mouse and human tissues and is of particular importance in epithelial cells. Thus exocrine gland secretion as well as electrolyte transport by both respiratory and intestinal epithelia requires TMEM16A. Because of its role for Ca2+-dependent Cl secretion in human airways, it is likely to become a prime target for the therapy of cystic fibrosis lung disease, caused by defective cAMP-dependent Cl secretion. It will be very exciting to learn, how TMEM16A and other TMEM16-proteins are activated upon increase in intracellular Ca2+, and whether the other nine members of the TMEM16 family also form Cl channels with properties similar to TMEM16A.  相似文献   
3.
With the aid of the halide-sensitive dye 6-methoxy-N-ethylquinolinium iodide (MEQ), changes in intracellular Cl- concentration were measured to characterize the role of Ca2+-dependent Cl- channels at the rat distal colon. In order to avoid indirect effects of secretagogues mediated by changes in the driving force for Cl- exit (i.e., mediated by opening of Ca2+-dependent K+ channels), all experiments were performed under depolarized conditions, i.e., in the presence of high extracellular K+ concentrations. The Ca2+-dependent secretagogue carbachol induced a stilbene-sensitive Cl- efflux, which was mimicked by the Ca2+ ionophore ionomycin. Surprisingly, the activation of Ca2+-dependent Cl- efflux was resistant against blockers of classical Ca2+ signaling pathways such as phospholipase C, protein kinase C and calmodulin. Hence, alternative pathways must be involved in the signaling cascade. One possible signaling molecule seems to be nitric oxide (NO) as the NO donor sodium nitroprusside could induce Cl- efflux. Vice versa, the NO synthase inhibitor N-ω-monomethyl-arginine (l-NMMA) reduced the carbachol-induced Cl- efflux. This indicates that NO may be involved in part of the signaling cascade. In order to test the ability of the epithelium to produce NO, the expression of different isoforms of NO synthase was verified by immunohistochemistry. In addition, the cytoskeleton seems to play a role in the activation of Ca2+-dependent Cl- channels. Inhibitors of microtubule association such as nocodazole and colchicine as well as jasplakinolide, a drug that enhances actin polymerization, inhibited the carbachol-induced Cl- efflux. Consequently, the activation of apical Cl- channels by muscarinic receptor stimulation differs in signal transduction from the classical phospholipase C/protein kinase C way.  相似文献   
4.
The presence of basolateral Cl channels in airway epithelium has been reported in several studies, but little is known about their role in the regulation of anion secretion. The purpose of this study was to characterize regulation of these channels by nitric oxide (NO) in Calu-3 cells. Transepithelial measurements revealed that NO donors activated a basolateral Cl conductance sensitive to 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and anthracene-9-carboxylic acid. Apical membrane permeabilization studies confirmed the basolateral localization of NO-activated Cl channels. Experiments using 8-bromo cyclic guanosine monophosphate (8Br-cGMP) and selective inhibitors of soluble guanylyl cyclase and inducible NO synthase (1H-[1, 2, 4] oxadiazolol-[4, 3-a] quinoxalin-1-one [ODQ] and 1400W [N-(3-Aminomethyl)benzyl)acetamidine], respectively) demonstrated that NO activated Cl channels via a cGMP-dependent pathway. Anion replacement and 36Cl flux studies showed that NO affected both Cl and HCO 3 secretion. Two different types of Cl channels are known to be present in the basolateral membrane of epithelial cells: Zn2+-sensitive ClC-2 and DIDS-sensitive bestrophin channels. S-Nitrosoglutathione (GSNO) activated Cl conductance in the presence of Zn2+ ions, indicating that ClC-2 channel function was not affected by GSNO. In contrast, DIDS completely inhibited GSNO-activated Cl conductance. Bestrophin immunoprecipitation studies showed that under control conditions bestrophin channels were not phosphorylated but became phosphorylated after GSNO treatment. The presence of bestrophin in airway epithelia was confirmed using immunohistochemistry. We conclude that basolateral Cl channels play a major role in the NO-dependent regulation of anion secretion in Calu-3 cells.  相似文献   
5.
6.
During photosynthesis, photosynthetic electron transport generates a proton motive force(pmf) across the thylakoid membrane, which is used for ATP biosynthesis via ATP synthase in the chloroplast. The pmf is composed of an electric potential(△Ψ) and an osmotic component(△pH).Partitioning between these components in chloroplasts is strictly regulated in response to fluctuating environments.However, our knowledge of the molecular mechanisms that regulate pmf partitioning is limited. Here, we report a bestrophin-like protein(At Best), which is critical for pmf partitioning. While the Dp H component was slightly reduced in atbest, the △Ψ component was much greater in this mutant than in the wild type, resulting in less efficient activation of nonphotochemical quenching(NPQ) upon both illumination and a shift from low light to high light. Although no visible phenotype was observed in the atbest mutant in the greenhouse, this mutant exhibited stronger photoinhibition than the wild type when grown in the field. At Best belongs to the bestrophin family proteins, which are believed to function as chloride(Cl~-) channels. Thus, our findings reveal an Researimportant Cl~- channel required for ion transport and homeostasis across the thylakoid membrane in higher plants. These processes are essential for fine-tuning photosynthesis under fluctuating environmental conditions.  相似文献   
7.
8.
Summary: Best macular dystrophy (BMD) is an autosomal dominant human disease characterized by macular degeneration with juvenile onset (OMIM 153700). The disease is most often associated with mutations in Bestrophin, which encodes a novel protein with four putative transmembrane domains. However, complete loss‐of‐function mutations in Bestrophin have not been reported in humans or mice. We have identified three homologs of human Bestrophin in the Drosophila genome (dbest1‐3). The protein products of these three genes share significant homology to a 364 amino acid N‐terminal domain of human Bestrophin. We used P‐element mutagenesis to delete dbest1, which encodes a protein with the highest amino acid similarity to Bestrophin. Three independent dbest1 mutants were recovered from the mutagenesis screen. Homozygous null mutations in dbest1 do not significantly alter the viability or fertility of mutant flies. Moreover, dbest1 mutants have normal photoreceptor morphology and function. genesis 31:130–136, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   
9.
The Bestrophin-1/VMD2 gene has been implicated in Best disease, a juvenile-onset vitelliform macular dystrophy. The Bestrophin proteins have anion channel activity, and the four mammalian members share sequence homologies in multiple transmembrane domains and an RFP-tripeptide motif. The expression patterns and functions of the Bestrophin genes in retinal pigment epithelium have been studied intensively, whereas little is known about their roles in vertebrate embryogenesis. This study examined the roles of four Xenopus tropicalis homologs of BEST genes. The xtBest genes showed spatially and temporally distinct expression. xtBest-2 was the only maternally expressed Best gene, and both xtBest-2 and the Xenopus laevis Best-2 gene were expressed at the edge of the blastopore lip including the organizer. Ectopic expression of xBest-2 caused defects in dorsal axis formation and in mesodermal gene expression during gastrulation. These results suggest a new role of the Bestrophin family genes in early vertebrate embryogenesis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号