首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2003年   2篇
排序方式: 共有6条查询结果,搜索用时 443 毫秒
1
1.
We investigated the potential of the South African high-biomass Ni hyperaccumulator Berkheya coddii to phytoextract Co and/or Ni from artificial metalliferous media. Plant accumulation of both metals from single-element substrates indicate that the plant/media metal concentration quotient (bioaccumulation coefficient) increases as total metal concentrations increase. Cobalt was readily taken up by B. coddii with and without the presence of Ni. Nickel uptake was, however, inhibited by the presence of an equal concentration of Co. Bioaccumulation coefficients of Ni and Co for the single element substrates (total metal concentration of 1000 micrograms g-1) were 100 and 50, respectively. Cobalt phytotoxicity was observed above a total Co concentration in plant growth media of 20 micrograms g-1. Elevated Co concentrations significantly decreased the biomass production of B. coddii without affecting the bioaccumulation coefficients. The mixed Ni-Co substrate produced bioaccumulation coefficients of 22 for both Ni and Co. Cobalt phytotoxicity in mixed Ni-Co substrate occurred above a total Co concentration of 15 micrograms g-1. When grown in the presence of both Ni and Co, the bioaccumulation coefficients of each metal were reduced, as compared to single-element substrate. This may indicate competition for binding sites in the root zone. The interference relationship between Ni and Co uptake demonstrated by B. coddii suggests a significant limitation to phytoextraction where both metals are present.  相似文献   
2.
The high levels of some metals in metal hyperaccumulator plants may be transferred to insect associates. We surveyed insects collected from the South African Ni hyperaccumulator Berkheya coddii to document whole-body metal concentrations (Co, Cr, Cu, Mg, Mn, Ni, Pb, Zn). We also documented the concentrations of these metals in leaves, stems and inflorescences, finding extremely elevated levels of Ni (4 700-16 000μg/g) and high values (5-34μg/g) for Co, Cr, and Pb. Of 26 insect morphotypes collected from B. coddii, seven heteropterans, one coleopteran, and one orthopteran contained relatively high concentrations of Ni (〉 500μg/g). The large number of high-Ni heteropterans adds to discoveries of others (from California USA and New Caledonia) and suggests that members of this insect order may be particularly Ni tolerant. Nymphs of the orthopteran (Stenoscepa) contained 3 500 μg Ni/g, the greatest Ni concentration yet reported for an insect. We also found two beetles with elevated levels of Mg (〉 2 800 μg/g), one beetle with elevated Cu (〉 70 μg/g) and one heteropteran with an elevated level of Mn (〉 200 μg/g). Our results show that insects feeding on a Ni hyperaccumulator can mobilize Ni into food webs, although we found no evidence of Ni biomagnification in either herbivore or carnivore insect taxa. We also conclude that some insects associated with hyperaccumulators can contain Ni levels that are high enough to be toxic to vertebrates.  相似文献   
3.
Nymphs of Stenoscepa sp. feed on leaves of the Ni hyperaccumulator Berkheya coddii at serpentine sites in Mpumalanga Province, South Africa. These sites contain Ni hyperaccumulators, Ni accumulators, and plants with Ni concentrations in the normal range. We conducted studies to: (i) determine the whole-body metal concentration of nymphs (including those starved to empty their guts); (ii) compare Stenoscepa sp. nymphs against other grasshoppers in the same habitat for whole-body metal concentrations; and (iii)compare the suitability of Ni hyperaccumulator and Ni accumulator plants as food sources for Stenoscepa sp. and other grasshoppers. Stenoscepa nymphs had extremely high whole-body Ni concentrations (3 500μg Ni/g). This was partly due to food in the gut, as starved insects contained less Ni (950 pg Ni/g). Stenoscepa nymphs survived significantly better than other grasshoppers collected from either a serpentine or a non-serpentine site when offered high-Ni plants as food. In a host preference test among four Berkheya species (two Ni hyperaccumulators and two Ni accumulators), Stenoscepa sp, preferred leaves of the Ni hyperaccumulator species. A preference experiment using leaves of three Senecio species (of which one species, Senecio coronatus, was represented by both a Ni hyperaccumulator and a Ni accumulator population) showed that Stenoscepa sp. preferred Ni accumulator Senecio coronatus leaves to all other choices. We conclude that Stenoscepa sp. is extremely Ni-tolerant. Stenoscepa sp. nymphs prefer leaves of hyperaccumulator Berkheya species, but elevated Ni concentration alone does not determine their food preference. We suggest that the extremely high whole-body Ni concentration of Stenoscepa nymphs may affect food web relationships in these serpentine communities.  相似文献   
4.
Hyperaccumulated elements such as Ni may defend plants against some natural enemies whereas other enemies may circumvent this defense. The Ni hyperaccumulator Berkheya coddii Roessler (Asteraceae) is a host plant species for Chrysolina clathrata (Clark), which suffers no apparent harm by consuming its leaf tissue. Beetle specimens collected from B. coddii had a whole body Ni concentration of 260 μg/g dry weight, despite consuming leaf material containing 15 100 μg Ni/g. Two experiments were conducted with adults of this beetle species: a no-choice experiment and a choice experiment. In the no-choice experiment we offered beetles foliage of one of four species of Berkheya: B. coddii, B. rehmannii Thell. var. rogersiana Thell., B. echinacea (Harv.) O. Hoffm. ex Burtt Davey, and B. insignis (Harv.) Thell. The two former species are Ni hyperaccumulators (defined as having leaf Ni concentration > 1 000 μg/g) whereas the latter have low Ni levels (< 200 μg/g) in their leaves. Masses of beetles were monitored for 6 days. Choice experiments used growing stem tips from the same Berkheya species, placed into Petri dishes with five Chrysolina beetles in each, and the amount of feeding damage caused on each of the four species was recorded. Beetles in the no-choice experiment gained mass when offered B. coddii , maintained mass on leaves of the other Ni hyperaccumulator ( B. rehmannii var. rogersiana ), and lost mass when offered non-hyperaccumulator leaves. In the choice test, beetles strongly preferred B. coddii to other Berkheya species. We conclude that C. clathrata may be host-specific on B. coddii.  相似文献   
5.
6.
Determination of the nickel (Ni) distribution in tissues of hyperaccumulator plants aids in understanding the strategies and mechanisms used by these plants to take up Ni from soils. Commonly used methods for measuring Ni distribution in plant tissues require expensive equipment and complex sample preparation. We tested a suite of staining methods consisting of dimethylglyoxime (DMG) dissolved in a range of solvents for the mapping of Ni distribution in the Ni hyperaccumulator Berkheya coddii Roessler. The best solution was DMG (10 g l−1) dissolved in borax (25 mM) and KOH (30 mM). Plant tissue cross-sections were imaged under a microscope immediately after DMG application. A Karhunen-Loeve transformation was applied to the images to minimize interference from colours of other origin, e.g. from chlorophyll. The distribution of Ni could be determined at the cellular level and consistent patterns were obtained for replicates. Staining of Ni dissolved in agar at various concentrations was used to calibrate the method. Concentrations as low as 50 mg kg−1 (fresh weight) could be detected. Averaged over several cross-sections the DMG method systematically gave lower concentrations than ICP-OES analysis of the respective plant part, indicating that not all Ni in the tissue reacted with DMG, but only Ni that is readily available. The DMG method may be used in conjunction with spectroscopic methods to resolve biologically active Ni.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号