首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   16篇
  国内免费   7篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   13篇
  2018年   10篇
  2017年   7篇
  2016年   7篇
  2015年   10篇
  2014年   22篇
  2013年   39篇
  2012年   11篇
  2011年   23篇
  2010年   13篇
  2009年   13篇
  2008年   23篇
  2007年   19篇
  2006年   16篇
  2005年   11篇
  2004年   7篇
  2003年   7篇
  2002年   7篇
  2001年   7篇
  2000年   2篇
  1999年   8篇
  1998年   6篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   7篇
  1984年   9篇
  1983年   8篇
  1982年   5篇
  1981年   5篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   4篇
排序方式: 共有390条查询结果,搜索用时 15 毫秒
1.
The various aspects of chemical crosslinking are addressed. Crosslinker reactivity, specificity, spacer arm length and solubility characteristics are detailed. Considerations for choosing one of these crosslinkers for a particular application are given as well as reaction conditions and practical tips for use of each category of crosslinkers.Abbreviations ABH azidobenzoyl hydrazide - ANB- NOS N-5-azido-2-nitrobenzoyloxysuccinimide - ASIB 1-(p-azidosalicylamido)-4-(iodoacetamido)butane - ASBA 4-(p-azidosalicylamido)butylamine - APDP N-[4-(p-azidosalicylamido) butyl]-3(2-pyridyldithio)propionamide - APG p-azidophenyl glyoxal monohydrate - BASED bis-[-(4-azidosalicylamido)ethyl] disulfide - BMH bismaleimidohexane - BS3 bis(sulfosuccinimidyl) suberate - BSOCOES bis[2-(succinimidooxycarbonyloxy)ethyl]sulfone - DCC N,N-dicyclohexylcarbodiimide - DFDNB 1,5-difluoro-2,4-dinitrobenzene - DMA dimethyl adipimidate·2HCl - DMP dimethyl pimelimidate·2HCl - DMS dimethyl suberimidate·2HCl - DPDPB 1,4-di-(3,2-pyridyldithio)propionamido butane - DMF dimethylformamide - DMSO dimethylsulfoxide - DSG disuccinimidyl glutarate - DSP dithiobis(succinimidylpropionate) - DSS disuccinimidyl suberate - DST disuccinimidyl tartarate - DTSSP 3,3-dithiobis (sulfosuccinimidylpropionate) - DTBP dimethyl 3,3-dithiobispropionimidate·2HCl - EDC or EDAC 1-ethyl-3-(3-dimethylaminopropyl)carbodimide hydrochloride - EDTA ethylenediaminetetraacetic acid disodium salt, dihydrate - EGS ethylene glycolbis(succinimidylsuccinate) - GMBS N--maleimidobutyryloxysuccinimide ester - HSAB N-hydroxysuccinimidyl-4-azidobenzoate - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - MBS m-maleimidobenzoyl-N-hydroxysuccinimide ester - MES 4-morpholineethanesulfonic acid - NHS N-hydroxysuccinimide - NHS-ASA N-hydroxysuccinimidyl-4-azidosalicylic acid - PMFS phenylmethylsulfonyl fluoride - PNP-DTP p-nitrophenyl-2-diazo-3,3,3-trifluoropropionate - SAED sulfosuccinimidyl 2-(7-azido-4-methylcoumarin-3-acetamide) ethyl-1,3-dithiopropionate - SADP N-succinimdyl (4-azidophenyl)1,3-dithiopropionate - SAND sulfosuccinimidyl 2-(m-azido-o-nitrobenzamido)-ethyl-1,3-dithiopropionate - SANPAH N-succinimidyl-6(4-azido-2-nitrophenyl-amino)hexanoate - SASD sulfosuccinimidyl 2-(p-azidosalicylamido)ethyl-1,3-dithiopropionate - SATA N-succinimidyl-S-acetylthioacetate - SDBP N-hydroxysuccinimidyl-2,3-dibromopropionate - SIAB N-succinimidyl(4-iodoacetyl)aminobenzoate - SMCC succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate - SMPB succinimidyl 4-(p-maleimidophenyl) butyrate - SMPT 4-succinimidyloxycarbonyl--methyl--(2-pyridyldithio)-toluene - sulfo-BSOCOES bis[2-sulfosuccinimidooxycarbonyloxy) ethyl]sulfone - sulfo-DST disulfosuccinimidyl tartarate - sulfo-EGS ethylene glycolbis(sulfosuccinimidylsuccinate) - sulfo-GMBS N--maleimidobutyryloxysulfosuccinimide ester - sulfo-MBS m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester - sulfo-SADP sulfosuccinimidyl(4-azidophenyldithio)propionate - sulfo-SAMCA sulfosuccinimidyl 7-azido-4-methylcoumarin-3-acetate - sulfo-SANPAH sulfosuccinimidyl 6-(4-azido-2-nitrophenylamino)hexanoate - sulfo-SIAB sulfosuccinimidyl(4-iodoacetyl)aminobenzoate - sulfo-SMPB sulfo-succinimidyl 4-(p-maleimidophenyl)butyrate - sulfo-SMCC sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate - SPDP N-succinimidyl 3-(2-pyridyldithio)propionate  相似文献   
2.
One hundred microorganisms have been screened for their abilities to selectively modify the structure of the sesquiterpene lactone known as quadrone. The only products obtained were those formed when the 4-ketone functional group was reduced to the stereoisometric 4-quadronols. Quadrone alcohol isomers of (S) or (R) absolute configurations were identified by proton and carbon n.m.r., and high performance liquid chromatography (h.p.l.c.) was used to separate and quantitate these compounds in extracts of fermentations. Microorganisms were categorized according to their abilities to achieve Re- or Si-face carbonyl reduction to yield (S)- or (R)-alcohol isomers by h.p.l.c. Three groups of microorganisms were identified: those yielding only the (R)-alcohol isomer; those yielding only the (S)-alcohol isomer; and those providing mixtures of the two alcohol isomers. With quadrone as substrate, Mucor and Curvularia spp. may contain either Re- or Si-face reductases. The selection of microorganisms for their abilities to achieve enantiospecific reductions of ketones to alcohol products is discussed.  相似文献   
3.
4.
(1) The effects of changes in the intramitochondrial volume, benzyl alcohol treatment and calcium-induced mitochondrial aging on the behaviour of liver mitochondria from control and glucagon-treated rats are reported. (2) The stimulatory effects of glucagon on mitochondrial respiration, pyruvate metabolism and citrulline synthesis could be mimicked by hypo-osmotic treatment of control mitochondria and reversed by calcium-induced aging of mitochondria or by treatment with 20 mM benzyl alcohol. Hypo-osmotic treatment increased the matrix volume whilst aging but not benzyl alcohol decreased this parameter. (3) Liver mitochondria from glucagon and adrenaline-treated rats were shown to be less susceptible to damage by exposure to calcium than control mitochondria and frequently showed slightly (15%) elevated intramitochondrial volumes. (4) Aging, benzyl alcohol and hypo-osmotic media increased the susceptibility of mitochondria to damage caused by exposure to calcium. (5) Glucagon-treated mitochondria were less leaky to adenine nucleotides than control mitochondria. (6) These results suggest that glucagon may exert its action on a wide variety of mitochondrial parameters through a change in the disposition of the inner mitochondrial membrane, possibly by stabilisation against endogenous phospholipase A2 activity. This effect may be mimicked by an increase in the matrix volume or reversed by calcium-dependent mitochondrial aging.  相似文献   
5.
Strictly anaerobic bacteria were enriched and isolated from freshwater sediment sources in the presence and absence of sulfate with sorbic acid as sole source of carbon and energy. Strain WoSo1, a Gram-negative vibrioid sulfate-reducing bacterium which was assigned to the species Desulfoarculus (formerly Desulfovibrio) baarsii oxidized sorbic acid completely to CO2 with concomitant stoichiometric reduction of sulfate to sulfide. This strain also oxidized a wide variety of fatty acids and other organic compounds. A Gram-negative rod-shaped fermenting bacterium, strain AmSo1, fermented sorbic acid stoichiometrically to about equal amounts of acetate and butyrate. At concentrations higher than 10 mM, sorbic acid fermentation led to the production of pentanone-2 and isopentanone-2 (3-methyl-2-butanone) as byproducts. Strain AmSo1 fermented also crotonate and 3-hydroxybutyrate to acetate and butyrate, and hexoses to acetate, ethanol, hydrogen, and formate. The guanine-plus-cytosine content of the DNA was 41.8±1.0 mol%. Sorbic acid at concentrations higher than 5 mM inhibited growth of this strain while strain WoSo1 tolerated sorbic acid up to 10 mM concentration.  相似文献   
6.
7.
Sperm whale apomyoglobin was reconstituted with selectively deuterated D6-2,4-diacetyldeuterohemin in which the 2H label was confined to the methyl groups of the acetyl moieties. A single resonance was observed in 2H NMR of the cyanoferrimyoglobin derivative, with a chemical shift 0.80 ppm downfield of external D12-TMS at pH 6.7. The corresponding chemical shift of D6-2,4-diacetyldeuterohemin-OMe as the cyanide complex in pyridine-water was 0.96 ppm downfield of external D12-TMS. The prominent HOD peak was well separated at 4.4 ppm downfield. The line width of the porphyrin 2H resonances in both the protein and free solvent environments yields evidence of considerable rotational freedom of the -CD3 groups about their axes.  相似文献   
8.
9.
Continuous monitoring of glucose and sugar sensing plays a vital role in diabetes control. The drawbacks of the present enzyme‐based sugar sensors have encouraged the investigation into alternate approaches to design new sensors. The popularity of fluorescence sensors is due to their ability to bind reversibly to compounds containing diol. In this study we investigated the binding ability of phenyl boronic acid P1 for monosaccharides and disaccharides (sugars) in aqueous medium at physiological pH 7.4 using steady‐state fluorescence and absorbance. P1 fluorescence was quenched due to formation of esters with sugars. Absorbance and fluorescence measurements led to results that indicated that the sugars studied could be ordered in terms of their affinity to P1, as stated: sucrose > lactose > galactose > xylose > ribose > arabinose. In each case, the slope of modified Stern–Volmer plots was nearly 1, indicating the presence of only a single binding site in boronic acids for sugars. Docking studies were carried out using Schrodinger Maestro v.11.2 software. The binding affinity of phenyl boronic acid P1 with periplasmic protein (PDB ID 2IPM and 2IPL) was estimated using GlideScore.  相似文献   
10.

Background

We previously reported that the σ1-receptor (σ1R) is down-regulated following cardiac hypertrophy and dysfunction in transverse aortic constriction (TAC) mice. Here we address how σ1R stimulation with the selective σ1R agonist SA4503 restores hypertrophy-induced cardiac dysfunction through σ1R localized in the sarcoplasmic reticulum (SR).

Methods

We first confirmed anti-hypertrophic effects of SA4503 (0.1–1 μM) in cultured cardiomyocytes exposed to angiotensin II (Ang II). Then, to confirm the ameliorative effects of σ1R stimulation in vivo, we administered SA4503 (1.0 mg/kg) and the σ1R antagonist NE-100 (1.0 mg/kg) orally to TAC mice for 4 weeks (once daily).

Results

σ1R stimulation with SA4503 significantly inhibited Ang II-induced cardiomyocyte hypertrophy. Ang II exposure for 72 h impaired phenylephrine (PE)-induced Ca2 + mobilization from the SR into both the cytosol and mitochondria. Treatment of cardiomyocytes with SA4503 largely restored PE-induced Ca2 + mobilization into mitochondria. Exposure of cardiomyocytes to Ang II for 72 h decreased basal ATP content and PE-induced ATP production concomitant with reduced mitochondrial size, while SA4503 treatment completely restored ATP production and mitochondrial size. Pretreatment with NE-100 or siRNA abolished these effects. Chronic SA4503 administration also significantly attenuated myocardial hypertrophy and restored ATP production in TAC mice. SA4503 administration also decreased hypertrophy-induced impairments in LV contractile function.

Conclusions

σ1R stimulation with the specific agonist SA4503 ameliorates cardiac hypertrophy and dysfunction by restoring both mitochondrial Ca2 + mobilization and ATP production via σ1R stimulation.

General significance

Our observations suggest that σ1R stimulation represents a new therapeutic strategy to rescue the heart from hypertrophic dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号