首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  11篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1997年   2篇
  1996年   3篇
排序方式: 共有11条查询结果,搜索用时 8 毫秒
1.
Four species of entomopathogenic nematodes, Steinernema carpocapsae , Heterorhabditis bacteriophora , H. indica and H. marelatus , were tested for their ability to kill and reproduce in larvae of the Asian longhorn beetle, Anoplophora glabripennis (Motchulsky). The larvae were permissive to all four species but mortality was higher and production of infective juveniles was greater for S. carpocapsae and H. marelatus . The lethal dosage of H. marelatus was determined to be 19 infective juveniles for second and third instar larvae and 347 infective juveniles for fourth and fifth instar larvae. H. marelatus infective juveniles, applied via sponges to oviposition sites on cut logs, located and killed host larvae within 30 cm galleries and reproduced successfully in several of the larvae.  相似文献   
2.
In 1992 and 1993, the field effectiveness of Heterorhabditis sp. (NL-HL81 strain), H. bacteriophora (HP 88 strain) and Steinernema carpocapsae ('All' strain) against the larvae of Temnorhinus mendicus Gyll. was assessed. The biological tests were compared with two chemical treatments (cypermethrin or deltamethrin) and one untreated control. In 1992, S. carpocapsae gave better results than Heterorhabditis sp. in reducing the percentage of infested roots, as compared with the untreated sample and the chemical one; similarly, the irrigated control gave the best results. In 1993, three concentrations of entomopathogenic nematodes (EPNs) were tested: 0.250 106 infective juveniles (IJs) m - 2, 0.125 106 IJs m - 2 and 0.075 106 IJs m - 2. The different numbers of EPNs did not give very different results from each other; however, H. bacteriophora at 0.075 106 IJs m - 2 was the least effective. In general, cypermethrin was more effective than deltamethrin, but one treatment with EPNs followed by irrigation was always more effective than two chemical applications.  相似文献   
3.
Five bioassays were compared for their usefulness to determine the virulence of four nematode strains. The objective of this study was to develop standard assays for particular nematode species. In all assays, the nematodes Steinernema feltiae (strain UK), S. riobravis, S. scapterisci Argentina and Heterorhabditis bacteriophora HP88 were exposed to Galleria mellonella larvae. All bioassays except the sand column assay were conducted in multi-well plastic dishes. In the penetration rate assay, the number of individual nematodes invading the insect was determined after a 48-h exposure to 200 infective juveniles (IJs). In the one-on-one assay, each larva was exposed to an individual nematode for 72 h before insect mortality was recorded. In the exposure time assay, insect mortality was recorded after exposure to 200 IJs for variable time periods. The dose-response assay involved exposing larvae to different nematode concentrations over the range 1-200 IJs/insect and recording mortality every 24 h for a 96-h period. In the sand columns assay, insects were placed in the bottom of a plastic cylinder filled with sand. Nematodes were applied on top of the sand and insect mortality was determined after IJs had migrated through the cylinder. The highest mortality level in the sand column assay was obtained with IJs of S. feltiae followed by H. bacteriophora; treatments with S. riobravis and S. scapterisci produced low levels of insect mortality. In the other four assays, S riobravis was the most virulent, followed by S. feltiae, H. bacteriophora and S. scapterisci. In the exposure time assay, rapid mortality was achieved when the insects were exposed to S. feltiae and S. riobravis. For these nematode species, a gradual increase in the number of individuals which penetrated into cadavers was recorded. Conversely, the number of nematodes in the cadavers of insects infected by H. bacteriophora and S. scapterisci remained low during the entire exposure period. In this assay, exposing the insects to these nematodes resulted in a gradual increase in mortality. In the dose-response assay, complete separation among nematode species was obtained only after 48 h of incubation at a concentration of 15 IJs/insect. LD and LD values were calculated from 50 90 dose-response assay data. However, these values did not indicate differences among the different nematode species. The present study demonstrated the variation in entomopathogenic nematode performance in different bioassays and supports the notion that one common bioassay cannot be used as a universal measure of virulence for all species and strains because nematodes differ in their behavior. Furthermore, particular assays should be used for different purposes. To select a specific population for use against a particular insect, assays that are more laborious but which simulate natural environmental conditions (e.g. the sand column assay) or invasion by the nematode (e.g. the penetration rate assay) should be considered. In cases where commercial production batches of the same nematode strains are compared, simple and fast assays are needed (e.g. the one-on-one and exposure time assays). Further studies are needed to determine the relationships between data obtained in each assay and nematode efficacy in the field.  相似文献   
4.
The impact of entomopathogenic nematodes (EPN) on mortality of soil-dwelling stages of western flower thrips (WFT), Frankliniella occidentalis (Thysanoptera: Thripidae) with different insect stage combinations was studied in the laboratory and under semi-field conditions. In laboratory experiments, the efficacy of Steinernema feltiae strain Sylt (Rhabditida: Steinernematidae) at a concentration of 400 infective juveniles (IJs) cm -2 was tested against different proportions of soil-dwelling stages of WFT, i.e. late second instar larvae (L2), prepupae and pupae. Soil was used as the testing medium. S. feltiae significantly affected the mortality of all soil-dwelling life stages of WFT at all tested insect stage combinations. The proportion of late L2 in the population negatively correlated to EPN-induced mortality. WFT prepupa and pupa were similarly susceptible to S. feltiae and their proportion in the population did not affect the EPN-induced mortality under laboratory conditions. The highest mortality (80%) was recorded when the population consisted only of prepupae and/or pupae. In the semi-field study, the impact of S. feltiae , S. carpocapsae strain DD136 and Heterorhabditis bacteriophora strain HK3 (Rhabditida: Heterorhabditidae) ( H. bacteriophora ) at concentrations of 400 and 1000 IJs cm -2 was evaluated against WFT reared on green beans, Phaseolus vulgaris L., as host plant in pot experiments in a controlled climate chamber. All tested EPN strains at both dose rates significantly reduced the WFT populations. Up to 70% reduction of the WFT population was obtained at the higher EPN concentration.  相似文献   
5.
Nitidulid beetles (Coleoptera) are considered to be serious pests of date palms throughout the world. They attack ripe fruit, causing it to rot, and damage is reflected in both reduced yield and lower fruit quality. The present study was aimed at an evaluation of the susceptibility to different sap beetles to entomopathogenic nematodes. We further tested nematode efficacy in pots filled with soil infested by third instar larvae of the two beetle species. In Petri dish assay, mortality levels of Carpophilus humeralis and C. hemipterus exposed to Heterorhabditis sp. IS-5 strain indicated that the latter is less susceptible to nematode infection. Exposure of both sap beetle species to different nematode strains gave moderate levels of mortality (35-65%) with the heterorhabditid strains HP88, IS-5 and IS-25. The IS-12 strain of Heterorhabditis sp. showed poor virulence (<35% mortality) against larvae of C. humeralis as well as larvae and pupae of C. humipterus. The nematode species S. riobrave showed moderate virulence (35-65%) mortality to larvae and pupae of S. humeralis as well as to larvae of C. hemipterus . Exposure of C. hemeralis to different concentrations of Heterorhabditis sp. IS-5 in pots containing soil resulted in high mortality (>65%). In contrast, the lower concentrations (500 and 1000 nematodes/pot) caused low mortality (35%) of C. hemipterus . Other heterorhabditid strains caused 95-100% mortality of C. humeralis in pot assay. The HP88 strain of H. bacteriophora and the Tx strain of Steinernema riobrave showed poor effectiveness. Incubation of different nematode strains with the C. humeralis larvae at high temperature (32 C) resulted in an increase in insect mortality with the IS-12 and IS-21 strains. Reduced mortality was recorded with the HP88 strain treatment at the higher temperature. The IS-5 and IS-12 strains were equally effective in all three soil types tested, whereas the IS-19 strain was more effective in the Almog type soil than in the others.  相似文献   
6.
Entomopathogenic nematodes are highly effective bioinsecticides . Their efficacy may be reduced due to the various pesticides they encounter in the soil . These include insecticides as well as nematicides used against plant - parasitic nematodes . The purpose of this study was to examine the feasibility of genetic selection as a means of enhancing resistance of the entomopathogenic nematode Heterorhabditis bacteriophora strain HP88 to the nematicides: Fenamiphos (an organophosphate) , Oxamyl (a carbamate) and Avermectin (a biological product) . Estimates of heritability ( h 2) of resistance to the three nematicides were obtained from analysis of inbred lines derived from the base population . The heritability estimate for Fenamiphos was h 2 = 0 . 31 , for Oxamyl h 2 = 0 . 71 and for Avermectin h 2 = 0 . 46 . Five rounds of selection were performed . Thereafter , each line was divided into two: for one subline selection continued for six additional rounds . The other subline was reared without selection for the six additional rounds . After the eleventh round , resistance to the nematicides was examined as were several traits relevant to biocontrol efficacy including virulence , heat tolerance and reproduction potential . Selection resulted in an 8 - 9 - fold increase in resistance to Fenamiphos and Avermectin and a 70 - fold increase in resistance to Oxamyl . The enhanced resistance Oxamyl and Avermectin , and to a lesser extent to Fenamiphos , was stable and continued after selection was relaxed . No deterioration in traits relevant to biocontrol efficacy was observed in the selected lines as compared with the base population . The selected lines displayed enhanced cross - resistance towards some , but not all , of the nematicides tested . These results demonstrate that genetic selection can be used to enhance resistance of entomopatho genic nematodes to certain environmental stresses . The selected lines will be useful bioinsecti cides in the context of integrated pest management .  相似文献   
7.
Penetration rate (the percentage of the initial infective juvenile inoculum that invades an insect host) was tested as an indicator of entomopathogenic nematode infectivity. Several host-parasite-substrate combinations were evaluated for penetration rate. Four steinernematids, Steinernema carpocapsae, S. glaseri, S. feltiae, S. riobravis and two strains of Heterorhabditis bacteriophora were tested in a contact bioassay against the wax moth, Galleria mellonella, the yellow meal worm, Tenebrio molitor, the beet armyworm, Spodoptera exigua, the black cutworm, Agrotis ipsilon, and the European corn borer, Ostrinia nubilalis. The insect larvae were confined individually in sand and filter paper arenas and exposed to 200 infective juveniles. After incubation, dead insects were dissected in order to count the nematodes penetrated. The data were analyzed for the effects of nematode strain and substrate on penetration rate. The bioassay substrate had a variable effect depending on the insect species. The nematode effect was highly significant for all insects tested. The penetration rate therefore allowed comparisons among nematode strains invading a host. Nematode ranking for infectivity differed according to the insect tested.  相似文献   
8.
Liquid culture-produced entomopathogenic nematodes, Heterorhabditis megidis and Heterorhabditis bacteriophora, were applied at 0.5 and 1.5 million dauer juveniles m-2 against Aphodius contaminatus and Phyllopertha horticola on a golf course. The reduction of A. contaminatus was found to be between 40 and 62%. P. horticola reduction reached 70% with H. megidis and 83% with H. bacteriophora. Turf damage caused by birds preying on the grubs was successfully prevented.  相似文献   
9.
The infective stage of entomopathogenic nematodes ( Heterorhabditis spp.) is the mobile, but developmentally arrested dauer juvenile (DJ). For commercial application, nematodes are produced in liquid culture. Prior to the inoculation of the DJ, their symbiotic bacterium Photorhabdus luminescens is cultured. The DJ exit from the arrested stage (recovery) and develop to reproductive adults. Recovery is a response to bacterial food signals. In liquid culture the percentage of DJs recovering from the DJ stage is highly variable, which significantly influences the number of reproducing hermaphrodites and the final DJ yields. The liquid culture yield is defined by the number of DJ mL -1 harvested from the medium. The heritability of the disposition to recover from the DJ stage and of the final DJ yield in liquid culture has been evaluated. From a hybrid strain of H. bacteriophora 30 homozygous inbred lines were established by inbreeding over seven generations. These inbred lines were propagated in liquid culture and DJ recovery and yields were recorded. The calculated heritability for the DJ recovery was low ( h 2 = 0.38). No significant genetic variability could be detected for this trait. In contrast, a high heritability ( h 2 = 0.90) was found for the total number of DJs produced in the liquid medium.  相似文献   
10.
A 3-year study was conducted in a Pinus halepensis reforestation of Apulia Region (Southern Italy) injecting IJs (infective juveniles) of Steinernema feltiae , S. carpocapsae and Heterorhabditis bacteriophora in aqueous and gel suspensions (Idrosorb SR 2002 [Nigem ® ], and Compex) into the nests of Thaumetopoea pityocampa caterpillar. This study showed that the gel suspensions do not percolate and that slow release of water from the gels allowed nematodes to survive and complete their life cycle in the host. Results demonstrate the feasibility of reducing overwintering larval populations by injecting gel suspension of S. feltiae . We found no negative effects on the endoparasite Phryxe caudata .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号