首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2018年   1篇
  1999年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有15条查询结果,搜索用时 17 毫秒
1.
A reaction-center pigment-protein complex of the green bacterium Prosthecochloris aestuarii was studied by means of nanosecond-flash spectroscopy. In this complex electron transfer between the primary and secondary acceptor is blocked. The spectra and kinetics of the absorption changes induced by a short flash indicated the formation of the radical pair P-840+I?, which decayed in 20–35 ns, mainly to the triplet state of the primary electron donor P-840. The absorption difference spectrum of the initial absorption change indicated that the primary acceptor I is either bacteriopheophytin c or another pigment with absorption maximum at 665 nm.  相似文献   
2.
The primary reactants in photosynthesis are defined as the chemical entities on which charges are generated and stabilized after capture of a photon by the photochemical trap: PIX hv P * IX P + I X P + IX , where P stands for the primary electron donor, P * for its excited singlet state, I for the first (ESR-detectable) electron acceptor and X for the secondary acceptor complex. The ESR and ENDOR experiments which have played a rÔle in the identification and characterization of P, I, and X in the bacterial and plant photosystems are comprehensively reviewed. The structural and kinetic information obtained with magnetic resonance techniques are integrated with results obtained with optical spectroscopy to give a unified picture of the pathway of primary photochemistry in photosynthesis. Nomenclature of Primary Reactants In the interest of uniformity this review introduces a nomenclature of the primary reactants that deviates in some respects from the commonly used labels. The nametags used here and listed below are abbreviations of the molecules that are identified as primary reactants, with the exception of the donors, for which I have retained the commonly accepted designation. Photosystems: PS 1, photosystem 1 of plants; PS 2, photosystem 2 of plants; pBPS, the photosystem of purple bacteria; gBPS, ditto of green bacteria. P: Primary donors: P700 (PS 1), P680 (PS 2), P860 (generic label for BChl a containing purple bacteria), P960 (generic label for BChl b containing purple bacteria), P840 (generic name for green bacteria). I: First acceptors: Chl a (PS 1), Ph a (PS 2), BPh a,b (pBPS). X: Secondary acceptors: F x (PS 1), pQ 1 (PS 2), uQ 1 or mQ 1 (pBPS), B (gBPS). Tertiary acceptors: F A,B (PS 1), pQ 2 (PS 2), uQ 2 (pBPS), F 1 (gBPS).This paper is based on a lecture given at the Joint Meeting of the Belgium, German (FRG), and Netherlands Societies for Biophysics, Aachen 1980  相似文献   
3.
John M. Olson 《BBA》1981,637(1):185-188
Two reaction center complexes prepared from cytoplasmic membranes of Chlorobium limicola f. thiosulfato-philum were compared by absorption and CD spectrophotometry. Bacteriopheophytin c (670 nm), which is optically active in one complex but not in the other, may serve as a secondary electron acceptor in the reaction center.  相似文献   
4.
Chromatophore membranes from Rhodopseudomonas sphaeroides were oriented by drying suspensions on the surfaces of glass slides. Polarized spectra of light-induced absorption changes were obtained between 500 and 1000 nm. As observed earlier, these spectra showed negative bands, reflecting photooxidation of the bacteriochlorophyll ‘special pair’ in the reaction centers, centered near 870, 810, 630 and 600 nm. These bands have been designated BY1, BY2, BX1 and BX2, respectively, corresponding to two Qy transitions and two Qx transitions of the dimeric special pair. We found the BY1 and BX1 transition moments to be parallel (within 20°) to the plane of the membrane, whereas the BX2 moment makes an angle of 55–63° with the plane.Using the photoselection technique we found that the angle between the BY1 and BX1 transition moments is 30°, while that between BY1 and BX2 is 75°. The BX1 and BX2 moments were found to be orthogonal, consistent with the prediction of molecular exciton theory for a dimer.By combining these data, we have calculated the orientations of the transition moments of the bacteriochlorophyll dimer in spherical polar coordinates, with the pole of the coordinate system normal to the plane of the membrane. The orientations of the Qy and Qx transition moments of the two bacteriopheophytin molecules in the reaction center were also computed in this coordinate system by transforming the data reported by Clayton, C.N., Rafferty, R.K. and Vermeglio, A. ((1979) Biochim. Biophys. Acta 545, 58–68). We have derived the transformation equations for two polar coordinate systems: in one, the pole is an axis of symmetry as defined by the orientations of purified reaction centers in stretched gelatin films (Rafferty, C.N. and Clayton, R.K. (1979) Biochim. Biophys. Acta 545, 106–121). In the other, the pole is normal to the plane of the chromatophore membrane. These two polar axes are approximately orthogonal.  相似文献   
5.
Aqueous mixtures of reaction centers of Rhodopseudomonas sphaeroides and gelatin were dried to form thin films. Following hydration, these films were stretched as much as two to three times their original length. Polarized absorption spectra showing linear dichroism were obtained for both unstretched and stretched films, with the planes and stretching axes of the films mounted in various geometries relative to the electric vector of the measuring beam. These data were analyzed in terms of the following model: Reaction centers possess an axis of symmetry that is fixed in relation to the reaction center structure. In unstretched films this axis is confined to the film plane and oriented at random within the plane. In stretched films the symmetry axis is aligned with the direction of stretching. In both preparations reaction centers are distributed randomly with respect to rotation about the axis of symmetry. The data are consistent with this model when the analysis acknowledges less than perfect orientation. For perfect orientation in a stretched film the model predicts uniaxial symmetry about the axis of stretching. The approach to this condition was examined with films stretched to different extents. Extrapolation yielded dichroic ratios for the ideal case of perfect orientation, and allowed calculation of the angles between the axis of symmetry and the various optical transition dipoles in the reaction center. This treatment included the two absorption bands of the bacteriochlorophyll ‘special pair’ (photochemical electron donor) in the Qx region, at 600 and 630 nm, which we were able to resolve in light minus dark difference spectra.  相似文献   
6.
We report and discuss Raman spectra of bacteriochlorophyll a and of bacteriopheophytin a obtained in vitro by resonance effect in their QX and Soret electronic bands. Selective excitation of spectra of either of these molecules in reaction centers of Rhodopseudomonas spheroides, strains Y and R 26, was achieved by illumination in their respective QX bands. Preliminary interpretation of the spectra yields information about the interactions assumed by these molecules in the reaction centers. Spheroidene bound to reaction centers of strain Y probably affects a conformation different from that assumed by the bulk spheroidene of the chromatophore.  相似文献   
7.
Systematic control over molecular driving forces is essential for understanding the natural electron transfer processes as well as for improving the efficiency of the artificial mimics of energy converting enzymes. Oxygen producing photosynthesis uniquely employs manganese ions as rapid electron donors. Introducing this attribute to anoxygenic photosynthesis may identify evolutionary intermediates and provide insights to the energetics of biological water oxidation. This work presents effective environmental methods that substantially and simultaneously tune the redox potentials of manganese ions and the cofactors of a photosynthetic enzyme from native anoxygenic bacteria without the necessity of genetic modification or synthesis. A spontaneous coordination with bis-tris propane lowered the redox potential of the manganese (II) to manganese (III) transition to an unusually low value (~400?mV) at pH?9.4 and allowed its binding to the bacterial reaction center. Binding to a novel buried binding site elevated the redox potential of the primary electron donor, a dimer of bacteriochlorophylls, by up to 92?mV also at pH?9.4 and facilitated the electron transfer that is able to compete with the wasteful charge recombination. These events impaired the function of the natural electron donor and made BTP-coordinated manganese a viable model for an evolutionary alternative.  相似文献   
8.
A new bacteriochlorophyll from brown-colored chlorobiaceae   总被引:4,自引:0,他引:4  
A new bacteriochlorophyll has been isolated by thin layer chromatography from all strains of the brown-colored Chlorobiaceae Chlorobium phaeobacteroides and Chlorobium phaeovibrioides. The new bacteriochlorophyll e —like the bacteriochlorophylls c and d—represents the major amount of bacteriochlorophyll in the cells in addition to small amounts of bacteriochlorophyll a. Bacteriochlorophyll e can be differentiated from the bacteriochlorophylls c and d by its absorption maxima in aceton and its different R f -value in the thin layer chromatogram. The structure of the new bacteriochlorophyll e has been elucidated on the basis of mass spectra, 1H- and 13C-NMR-spectra, the UV/VIS-spectrum as well as IR-, ORD-, and CD-spectra. The new bacteriochlorophyll has the same relationship to bacteriochlorophyll c as chlorophyll b from green plants to chlorophyll a; therefore, bacteriochlorophyll e represents the first formyl-substituted chlorophyll from bacteria. Similar to the bacteriochlorophylls c and d, the new bacteriochlorophyll e consists of a mixture of at least three homologues which differ from each other by different substituents on the pyrrol rings II and III.Abbreviations Used DSM Deutsche Sammlung von Mikroorganismen, Göttingen - Bchl. bacteriochlorophyll - Bph. bacteriopheophytin - P phytol - Gg geranylgeraniol - F farnesol - C Chlorobium This work was made possible by the technology program of the Bundesministerium für Forschung und Technologie.  相似文献   
9.
Bacteriochlorophyll (BChl) c in whole cells of Chlorobium tepidum grown at 46 °C changed into bacteriopheophytin (BPhe) c within 10 days after reaching full growth. When a small amount of C. tepidum cells in which BChl c had been completely pheophytinized were transferred to a new culture medium, normal growth was observed after a short lag phase, and the absorption spectrum of the growing cells showed the presence of a normal amount of BChl c. During the growth of C. tepidum in the new culture, the BChl c concentration was nearly proportional to the cell density measured by turbidity (OD640). These results indicate that C. tepidum can survive even when BChl c has been completely pheophytinized and that BChl c is newly synthesized in such cells when transferred to a new culture medium. In partly pheophytinized cells, upon excitation of BPhe c at 550 nm the fluorescence emission spectrum showed maxima at 775 and 810 nm, which correspond to emissions from BChl c and BChl a, respectively. This indicates energy transfer from BPhe c to BChl c and BChl a. In cells in which BChl c was completely pheophytinized, fluorescence measurements were indicative of direct energy transfer from BPhe c to baseplate BChl a. These findings suggest that when BChl c in C. tepidum cells is pheophytinized, the product (BPhe c) remains in the chlorosomes and continues to work as a light-harvesting pigment. Received: 2 October 1998 / Accepted: 22 April 1999  相似文献   
10.
Oligomers of bacteriopheophytin (BPh) and bacteriochlorophyll (BChl) were formed in mixed aqueous-organic solvent systems, and in aqueous micelles of the detergent lauryldimethylamine oxide (LDAO). Conditions were found that gave relatively homogeneous samples of oligomers and that allowed quantitative comparisons of the spectroscopic properties of the monomeric and oligomeric pigments. The formation of certain types of oligomers is accompanied by a large bathochromic shift of the long-wavelength (Qy) absorption band of the BChl or BPh, and by a substantial increase in its dipole strength (hyperchromism). The hyperchromism of the Qy band occurs at the expense of the Soret band, which loses dipole strength. The Qx band shifts slightly to shorter wavelengths and also loses dipole strength. The CD spectrum in the near-infra-red (Qy) region becomes markedly nonconservative. (The net rotational strength in the Qy region is positive.) This also occurs at the expense of the bands at shorter wavelengths, which gain a net negative rotational strength. The spectroscopic properties of the oligomers resemble those of some of the BChl-protein complexes found in photosynthetic bacteria. The oligomerization of BPh in LDAO micelles is linked to the formation of large, cylindrical micelles that contain on the order of 105 LDAO molecules. However, the spectral changes probably occur on the formation of small oligomers of BPh; they begin to be seen when the micelles contain about 10 molecules of BPh. The BPh oligomers formed in LDAO micelles fluoresce at 865 nm, but the fluorescence yield is decreased about 40-fold, relative to that of monomeric BPh. The fluorescence yield is insensitive to the BPh/LDAO molar ratio, suggesting that the oligomers formed under these conditions are predominantly dimers. When the oligomers are excited with a short flash of light, they are converted with a low quantum yield into a metastable form. This transformation probably involves alterations in the geometry of the oligomer, but not full dissociation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号