首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  2022年   1篇
  2019年   2篇
  2018年   4篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2005年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有24条查询结果,搜索用时 17 毫秒
1.
The kinetics of decay in absorbance at 610 nm in the reaction of cysteine with ceruloplasmin was biphasic under anaerobic conditions. Admission of oxygen to the bleached ceruloplasmin restored the blue color to about 75 % of the original value. However, under aerobic or anaerobic conditions an initial bleaching corresponded to a 25 % decrease in blue color. This change was irreversible and remained after removal of excess cysteine from the reaction mixture by dialysis. There was no correlation between transient and steady-state kinetic parameters. Circular dichroism measurements showed a characteristic reduction in the negative band at 450 nm, which is specific for type 1b copper. Isolation and further studies on cysteine-modified ceruloplasmin with a lower A610/A280 ratio showed < 10% reduction in enzyme activity toward p-phenylenediamine and o-dianisidine. Evidence is also presented that ceruloplasmin catalyzes the oxidation of cysteine with a one-electron reduction of oxygen and the formation of superoxide ion, which is then converted to H2O2 by ceruloplasmin. The effect of superoxide dismutase and catalase also confirms the presence of superoxide and H2O2. In sum, these data show that a permanent reduction of type 1b copper occurred when cysteine was used as a substrate. We conclude that there is a single electron transfer from cysteine directly to oxygen using one specific copper of ceruloplasmin, type 1b.  相似文献   
2.
We have identified a membrane-active region in the HCV NS5A protein by performing an exhaustive study of membrane rupture induced by a NS5A-derived peptide library on model membranes having different phospholipid compositions. We report the identification in NS5A of a highly membranotropic region located at the suggested membrane association domain of the protein. We report the binding and interaction with model membranes of two peptides patterned after this segment, peptides 1A and 1B, derived from the strains 1a_H77 and 1b_HC-4J respectively. We show that they insert into phospholipid membranes, interact with them, and are located in a shallow position in the membrane. The NS5A region where this segment resides might have an essential role in the membrane replication and/or assembly of the viral particle through the modulation of the replication complex, and consequently, directly implicated in the HCV life cycle.  相似文献   
3.
The protein harakiri (Hrk) is a pro-apoptotic BH3-only protein which belongs to the Bcl-2 family. Hrk appears associated to the mitochondrial outer membrane, apparently by a putative transmembrane domain, where it exerts its function. In this work we have identified a 27mer peptide supposed to be the putative membrane domain of the protein at the C-terminal region, and used infrared and fluorescence spectroscopies to study its secondary structure as well as to characterize its effect on the physical properties of phospholipid model membranes. The results presented here showed that the C-terminal region of Hrk adopts a predominantly α-helical structure whose proportion and destabilization capability varied depending on phospholipid composition. Moreover it was found that the orientation of the α-helical component of this C-terminal Hrk peptide was nearly perpendicular to the plane of the membrane. These results indicate that this domain is able of inserting into membranes, where it adopts a transmembrane α-helical structure as well as it considerably perturbs the physical properties of the membrane.  相似文献   
4.
5.
6.
We have studied the binding and interaction of the peptide E1FP with various model membranes. E1FP is derived from the amino acid segment 274-291 of the hepatitis C virus envelope glycoprotein E1, which was previously proposed to host the peptide responsible for fusion to target membranes. In the present study we addressed the changes which take place upon E1FP binding in both the peptide and the phospholipid bilayer, respectively, through a series of complementary experiments. We show that peptide E1FP binds to and interacts with phospholipid model membranes, modulates the polymorphic phase behavior of membrane phospholipids, is localized in a shallow position in the membrane and interacts preferentially with cholesterol. The capability of modifying the biophysical properties of model membranes supports its role in HCV-mediated membrane fusion and suggests that the mechanism of membrane fusion elicited by class I and II fusion proteins might be similar.  相似文献   
7.
We have identified a membrane-active region in the HCV NS4B protein by studying membrane rupture induced by a NS4B-derived peptide library on model membranes. This segment corresponds to one of two previously predicted amphipathic helix and define it as a new membrane association domain. We report the binding and interaction with model membranes of a peptide patterned after this segment, peptide NS4BH2, and show that NS4BH2 strongly partitions into phospholipid membranes, interacts with them, and is located in a shallow position in the membrane. Furthermore, changes in the primary sequence cause the disruption of the hydrophobicity along the structure and prevent the resulting peptide from interacting with the membrane. Our results suggest that the region where the NS4BH2 is located might have an essential role in the membrane replication and/or assembly of the viral particle through the modulation of the replication complex. Our findings therefore identify an important region in the HCV NS4B protein which might be implicated in the HCV life cycle and possibly in the formation of the membranous web.  相似文献   
8.
Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20%–30% of breast cancers. Grb7 binds to erbB2 and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In a prior study, we reported the solution structure of the Grb7-SH2/erbB2 peptide complex. In this study, T1, T2, and steady-state NOE measurements were performed on the Grb7-SH2 domain, and the backbone relaxation behavior of the domain is discussed with respect to the potential function of an insert region present in all three members of this protein family. Isothermal titration calorimetry (ITC) studies were completed measuring the thermodynamic parameters of the binding of a 10-residue phosphorylated peptide representative of erbB2 to the SH2 domain. These measurements are compared to calorimetric studies performed on other SH2 domain/phosphorylated peptide complexes available in the literature.  相似文献   
9.
Friedreich's ataxia (FRDA), the most common inherited ataxia, is a neurodegenerative disease caused by a reduction in the levels of the mitochondrial protein frataxin, the function of which remains a controversial matter. Several therapeutic approaches are being developed to increase frataxin expression and reduce the intramitochondrial iron aggregates and oxidative damage found in this disease. In this study, we tested separately the response of a Drosophila RNAi model of FRDA ( Llorens et al., 2007) to treatment with the iron chelator deferiprone (DFP) and the antioxidant idebenone (IDE), which are both in clinical trials. The FRDA flies have a shortened life span and impaired motor coordination, and these phenotypes are more pronounced in oxidative stress conditions. In addition, under hyperoxia, the activity of the mitochondrial enzyme aconitase is strongly reduced in the FRDA flies. This study reports that DFP and IDE improve the life span and motor ability of frataxin-depleted flies. We show that DFP eliminates the excess of labile iron in the mitochondria and thus prevents the toxicity induced by iron accumulation. IDE treatment rescues aconitase activity in hyperoxic conditions. These results validate the use of our Drosophila model of FRDA to screen for therapeutic molecules to treat this disease.  相似文献   
10.
Hemophilia A, a life-threatening bleeding disorder, is caused by deficiency of factor VIII (FVIII). Replacement therapy using rFVIII is the first line therapy for hemophilia A. However, 15-30% of patients develop neutralizing antibody, mainly against the C2, A3 and A2 domains. It has been reported that PS-FVIII complex reduced total and neutralizing anti-rFVIII antibody titers in hemophilia A murine models. Here, we developed FVIII-containing cochleate cylinders, utilizing PS-Ca2+ interactions and characterized these particles for optimal in vivo properties using biophysical and biochemical techniques. Approximately 75% of the protein was associated with cochleate cylinders. Sandwich ELISA, acrylamide quenching and enzymatic digestion studies established that rFVIII was shielded from the bulk aqueous phase by the lipidic structures, possibly leading to improved in vivo stability. Freeze-thawing and rate-limiting diffusion studies revealed that small cochleate cylinders with a particle size of 500 nm or less could be generated. The release kinetics and in vivo experiments suggested that there is slow and sustained release of FVIII from the complex upon systemic exposure. In vivo studies using tail clip method indicated that FVIII-cochleate complex is effective and protects hemophilic mice from bleeding. Based on these studies, we speculate that the molecular interaction between FVIII and PS may provide a basis for the design of novel FVIII lipidic structures for delivery applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号