首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  国内免费   1篇
  2014年   3篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   3篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1977年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
This paper 1) reviews improvements and new approaches in methodologies for estimating biological N2 fixation (BNF) in wetland soils, 2) summarizes earlier quantitative estimates and recent data, and 3) discusses the contribution of BNF to N balance in wetland-rice culture.Measuring acetylene reducing activity (ARA) is still the most popular method for assessing BNF in rice fields. Recent studies confirm that ARA measurements present a number of problems that may render quantitative extrapolations questionable. On the other hand, few comparative measures show ARA's potential as a quantitative estimate. Methods for measuring photodependent and associative ARA in field studies have been standardized, and major progress has been made in sampling procedures. Standardized ARA measurements have shown significant differences in associative N2 fixation among rice varieties.The 15N dilution method is suitable for measuring the percentage of N derived from the atmosphere (% Ndfa) in legumes and rice. In particular, the 15N dilution technique, using available soil N as control, appears to be a promising method for screening rice varieties for ability to utilize biologically fixed N. Attempts to adapt the 15N dilution method to aquatic N2 fixers (Azolla and blue-green algae [BGA]) encountered difficulties due to the rapid change in 15N enrichment of the water.Differences in natural 15N abundance have been used to show differences among plant organs and species or varieties in rice and Azolla, and to estimate Ndfa by Azolla, but the method appears to be semi-quantitative.Recent pot experiments using stabilized 15N-labelled soil or balances in pots covered with black cloth indicate a contribution of 10–30 kg N ha-1 crop-1 by heterotrophic BNF in flooded planted soil with no or little N fertilizer used.Associative BNF extrapolated from ARA and 15N incorporation range from 1 to 7 kg N ha-1 crop-1. Straw application increases heterotrophic and photodependent BNF. Pot experiments show N gains of 2–4 mg N g-1 straw added at 10 tons ha-1.N2 fixation by BGA has been almost exclusively estimated by ARA and biomass measurements. Estimates by ARA range from a few to 80 kg N ha-1 crop-1 (average 27 kg). Recent extensive measurements show extrapolated values of about 20 kg N ha-1 crop-1 in no-N plots, 8 kg in plots with broadcast urea, and 12 kg in plots with deep-placed urea.Most information on N2 fixed by Azolla and legume green manure comes from N accumulation measurements and determination of % Ndfa. Recent trials in an international network show standing crops of Azolla averaging 30–40 kg N ha-1 and the accumulation of 50–90 kg N ha-1 for two crops of Azolla grown before and after transplanting rice. Estimates of % Ndfa in Azolla by 15N dilution and delta 15N methods range from 51 to 99%. Assuming 50–80% Ndfa in legume green manures, one crop can provide 50–100 kg N ha-1 in 50 days. Few balance studies in microplots or pots report extrapolated N gains of 150–250 kg N ha-1 crop-1.N balances in long-term fertility experiments range from 19 to 98 kg N ha-1 crop-1 (average 50 kg N) in fields with no N fertilizer applied. The problems encountered with ARA and 15N methods have revived interest in N balance studies in pots. Balances are usually highest in flooded planted pots exposed to light and receiving no N fertilizer; extrapolated values range from 16 to 70 kg N ha-1 crop-1 (average 38 kg N). A compilation of balance experiments with rice soil shows an average balance of about 30 kg N ha-1 crop-1 in soils where no inorganic fertilizer N was applied.Biological N2 fixation by individual systems can be estimated more or less accurately, but total BNF in a rice field has not yet been estimated by measuring simultaneously the activities of the various components in situ. As a result, it is not clear if the activities of the different N2-fixing systems are independent or related. A method to estimate in situ the contribution of N2 fixed to rice nutrition is still not available. Dynamics of BNF during the crop cycle is known for indigenous agents but the pattern of fixed N availability to rice is known only for a few green manure crops.  相似文献   
2.
The objective of this study was to evaluate whether alpha-naphthoflavone (ANF) modulates aryl hydrocarbon receptor (AhR) signaling in rainbow trout (Oncorhynchus mykiss). AhR and cytochrome P450 1A1 (CYP1A1) protein and mRNA content were used as indictors of AhR signaling. Primary culture of rainbow trout hepatocytes were exposed to different concentrations of ANF (10(-9)-10(-5) M), while beta-naphthoflavone (BNF 10(-10)-10(-6) M) and a combination of ANF and BNF were used to elucidate the impact of ANF on AhR signaling. ANF increased AhR and CYP1A1 protein expression in a concentration-related manner; the maximal induction was about 50% that of BNF. Despite the differences in protein content between ANF and BNF stimulation, the maximal AhR and CYP1A1 mRNA abundance seen with the high concentrations of ANF and BNF were similar. ANF significantly decreased ( approximately 50%) BNF-induced AhR protein expression (only at 10(-9) M), but not CYP1A1 protein and gene expression. In addition, ANF at a sub-maximal concentration (10(-7) M) did not affect BNF-induced AhR protein content, but increased the sensitivity of hepatocytes to BNF-mediated CYP1A1 protein expression. Taken together, the mode of action of ANF appears similar to BNF, including modulation of AhR expression and activation of AhR-mediated signaling in rainbow trout hepatocytes. Overall, ANF is not only a partial AhR agonist, but may also modify BNF-mediated AhR signaling in trout hepatocytes.  相似文献   
3.
Cissé  Madiama  Vlek  Paul L. G. 《Plant and Soil》2003,250(1):105-112
The N2 fixed by Azolla before and after urea application during the rice cycle, the mineralisation of Azolla-N as well as its availability to rice was studied in two greenhouse experiments conducted in 1996 and 1997 and in June 1998 in Goettingen (Germany). Dry matter production of the various rice parts of experiment 1 showed a clear positive synergism between treatment with Azolla and urea with a resulting apparent N recovery by rice increasing from 40% (without Azolla) to 57% in the presence of Azolla. Part of this increase may be due to N fixed biologically by Azolla and transferred to the rice. The second experiment shed some light on the role of BNF. Using an iterative method of estimation, the daily rate of N fixation was estimated at 0.6 – 0.7 kg N ha–1. The rate was not so much affected by the age of the Azolla crop. At this rate, the BNF would amount to up to 100 kg N ha–1 over a 130-day season. Assuming that BNF may be inhibited for a period of 5 – 10 days following urea application due to high levels of N in the floodwater, this might reduce the BNF by between 6 and 14 kg N ha over the season. Using the mean-pool-abundance concept, it was estimated that around 75 – 80% of the Azolla-N mineralized during the growth period was actually absorbed by the rice plants. Of the N taken up by rice around 28% was derived from the biologically fixed Azolla N, the remainder was urea N cycled through the Azolla. Azolla also seems to help sustain the soil N supply by returning N to the soil in quantities roughly equal to those extracted from the soil by the rice plant.  相似文献   
4.
Induction of cytochrome P4501A (CYP1A) in fish is an important biomarker in marine monitoring programmes but a number of factors complicate interpretation of data based on catalytic activity. To provide additional analytical tools, we have cloned and sequenced entire (dab) and partial cDNAs (flounder, turbot, sand eel) from several fish species. A detailed analysis comparing the new sequences to those on the database (13 sequences) is presented and identifies an invariant, teleost-specific sequence (195-IVVSVANVICGMCFGRRYDH-214) which might be the basis for production of a species cross-reactive antibody. Northern and slot blots of fish RNA (sand eel, plaice, turbot, flounder and dab) showed extensive cross-species hybridisation with each of the cDNAs (sand eel, plaice, turbot, flounder and dab). The exception was turbot RNA, which only gave adequate hybridisation when the turbot probe was used. Attempts to normalise the hybridisation data to GAPDH mRNA were not satisfactory since there were significant species differences in expression of this gene and expression was suppressed (20–40%) by β-naphthoflavone treatment. The CYP1A probes indicated induction levels relative to untreated dab of: plaice (five-fold); turbot (12-fold); flounder (12-fold); and dab (10-fold). The study demonstrates the relative ease with which species-specific molecular probes can be generated and used.  相似文献   
5.
6.
N-nitrosodiethanolamine is converted to N-(2-hydroxyethyl)-N-(formylmethyl)nitrosamine (EFMN) and N-(2-hydroxyethyl)-N-carboxymethyl) nitrosamine (ECMN) by rat S9 liver preparation as a result of beta-oxidation. The beta-oxidized metabolites were isolated and identified by gas chromatography-mass spectrometry (GC-MS) by comparison with authentic standards. An original gas chromatographic method with thermal energy detection was set up to measure both metabolites quantitatively. Under the experimental conditions described, when NAD+ was used as cofactor, about 1% of N-nitrosodiethanolamine (NDELA) was converted to EFMN and about half of the latter product was in turn converted to ECMN. The beta-nitrosamino aldehyde seems to transfer the nitroso moiety to other amino-compounds, even at physiological pH. The significance of the metabolic formation of EFMN in relation to the carcinogenicity of NDELA is discussed.  相似文献   
7.
Biological nitrogen fixation (BNF) technology with special reference to Rhizobium-legume symbiosis is growing very rapidly with the hope of combatting world hunger by producing cheaper protein for animal and human consumption in the Third World. One can see rapid progress made in the biochemistry and molecular biology of symbiotic nitrogen fixation in general; however, less progress has been made on the ecological aspects despite the fact that an enormous amount of literature is available on inoculation problems and on agronomic aspects of symbiotic nitrogen fixation. So far most information on Rhizobium concerns fast-growing rhizobia and their host legume. Although it is essential that food production using BNF technology should be maximized in the Third World, the least work has been done on slow-growing rhizobia, which are generally found in tropical and sub-tropical soils. The majority of the developing countries are in tropical and sub-tropical regions. Except for R. japonicum, a microsymbiont partner of soybean (Glycine max), the majority of the slow-growing rhizobia belong to the cowpea group, and we refer to cowpea rhizobia as tropical rhizobia species. In this review we have tried to consolidate the recent progress made on ecology and genetics of tropical rhizobia. By using recombinant DNA technology techniques it is expected that super strains of rhizobia with desirable characteristics can be produced. One must evaluate the efficiency and effectiveness of these genetically manipulated laboratory strains under field conditions. In conclusion, if one aims at combatting hunger in the Third World using BNF technology, an intensive research programme on fundamental and applied aspects of tropical rhizobia species is suggested. This involves close cooperation between molecular biologists and microbial ecologists.  相似文献   
8.
Comparative EPR studies were made on two high-spin Fe(III) porphine model systems and mammalian liver microsomal cytochromes P-450, all of which exhibit approximately the same degrees of rhombicity in their EPR spectra. Comparison of g values and linewidths as a function of temperature, and of the microwave power saturation demonstrated that EPR characteristics of P-450 are more similar to the Fe(III) porphines having the thiolate axial ligand than in the other model systems, the mixed crystals of Fe(III) porphine with the corresponding free base porphine, in which no thiolate ligand is involved.There is, however, a discrepancy between P-450 and the model thiolates with respect to the size of the zero-field parameter D. These observations indicate that P-450 heme has essential structural features in common with thiolates but the Fe-S bond of P-450 may be modified from its normal orientation in model thiolates, probably as a result of the constraints imposed by the protein stucture.  相似文献   
9.
The structural characteristics of several dithiocarbamates (DTCs) [N-p-methylbenzyl-D-glucamine dithiocarbamate (MBGD), N-benzyl-D-glucamine dithiocarbamate (BGD), N-p-hydroxymethylbenzyl-D-glucamine dithiocarbamate (HBGD) and N-p-carboxybenzyl-D-glucamine dithiocarbamate (CBGD)] that induce in vivo mobilization of cadmium (Cd) were examined in mice. The renal and hepatic contents of Cd were lower in the treatments with Cd-DTC combinations than in that with Cd alone. Probenecid pretreatment decreased the renal content of Cd in Cd-MBGD and Cd-BGD treated mice, but it increased the renal content of Cd and decreased the urinary excretion of the metal in Cd-HBGD and Cd-CBGD treated mice. Furthermore, although ureter-ligation did not affect the renal content of Cd in Cd-MBGD and Cd-BGD treated mice, it increased the renal content of Cd in Cd-HBGD and Cd-CBGD treated mice. These findings suggest that Cd-MBGD and Cd-BGD complexes are taken up into the tubular cells by an organic anion transport system through the basolateral membrane, whereas Cd-HBGD and Cd-CBGD complexes are secreted to the tubular lumen by an organic anion transport system through the brush border membrane. The results of probenecid pretreatment also led us to assume that the hepatic transport of these four Cd-DTC complexes is regulated, at least in part, by a probenecid-sensitive organic anion transport system.  相似文献   
10.
The Amazon catfish genus Pterygoplichthys (Loricariidae, Siluriformes) is closely related to the loricariid genus Hypostomus, in which at least two species lack detectable ethoxyresorufin-O-deethylase (EROD) activity, typically catalyzed by cytochrome P450 1 (CYP1) enzymes. Pterygoplichthys sp. liver microsomes also lacked EROD, as well as activity with other substituted resorufins, but aryl hydrocarbon receptor agonists induced hepatic CYP1A mRNA and protein suggesting structural/functional differences in Pterygoplichthys CYP1s from those in other vertebrates. Comparing the sequences of CYP1As of Pterygoplichthys sp. and of two phylogenetically related siluriform species that do catalyze EROD (Ancistrus sp., Loricariidae and Corydoras sp., Callichthyidae) showed that these three proteins share amino acids at 17 positions that are not shared by any fish in a set of 24 other species. Pterygoplichthys and Ancistrus (the loricariids) have an additional 22 amino acid substitutions in common that are not shared by Corydoras or by other fish species. Pterygoplichthys has six exclusive amino acid substitutions. Molecular docking and dynamics simulations indicate that Pterygoplichthys CYP1A has a weak affinity for ER, which binds infrequently in a productive orientation, and in a less stable conformation than in CYP1As of species that catalyze EROD. ER also binds with the carbonyl moiety proximal to the heme iron. Pterygoplichthys CYP1A has amino acid substitutions that reduce the frequency of correctly oriented ER in the AS preventing the detection of EROD activity. The results indicate that loricariid CYP1As may have a peculiar substrate selectivity that differs from CYP1As of most vertebrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号