首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  8篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2006年   1篇
  1998年   1篇
排序方式: 共有8条查询结果,搜索用时 46 毫秒
1
1.
Enantioseparation through liquid extraction technology is an emerging field, e.g., enantioseparations of amino acids (and derivatives thereof), amino alcohols, amines, and carboxylic acids have been reported. Often, when a new selector is developed, the versatility of substrate scope is investigated. From an industrial point of view, the problem is typically approached the other way around, and for a target racemate, a selector needs to be found in order to accomplish the desired enantioseparation. This study presents such a screening approach for the separation of the enantiomers of dl ‐α‐methyl phenylglycine amide (dl ‐α‐MPGA), a model amide racemate with high industrial relevance. Chiral selectors that were reported for other classes of racemates were investigated, i.e., several macrocyclic selectors and Pd‐BINAP complexes. It appeared very challenging to obtain both high extraction yields and good enantioselectivity for most selectors, but Pd‐BINAP‐based selectors performed well, with enantioselectivities up to 7.4 with an extraction yield of the desired enantiomer of 95.8%. These high enantioselectivities were obtained using dichloromethane as solvent. Using less volatile chlorobenzene or 1‐chloropentane, reasonable selectivities of up to 1.7 were measured, making these the best alternative solvents for dichloromethane. Chirality 27:123–130, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   
2.
BINAP‐metal complexes were prepared as extractant for enantioselective liquid–liquid extraction (ELLE) of amino‐(4‐nitro‐phenyl)‐acetic acid (NPA) enantiomers. The influence of process variables, including types of organic solvents and metal precursor, concentration of ligand, pH, and temperature on the efficiency of the extraction, were investigated experimentally. An interfacial reaction model was established for insightful understanding of the chiral extraction process. Important parameters required for the model were determined. The experimental data were compared with model predictions to verify the model prediction, It was found that the interfacial reaction model predicted the experimental results accurately. By modeling and experiment, an optimal extraction condition with pH of 7 and host (extractant) concentration of 1 mmol/L was obtained and high enantioselectivity (αop) of 3.86 and performance factor (pf) of 0.1949 were achieved. Chirality 26:79–87, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
3.
《Chirality》2017,29(9):541-549
A type of resin‐anchored CuPF6‐(S )‐BINAP was synthesized and identified. The PS‐CuPF6‐(S )‐BINAP resin was used to adsorb the phenylalanine enantiomers. The results showed that the adsorption capacity of PS‐CuPF6‐(S )‐BINAP resin toward L‐phenylalanine was higher than that of resin toward D‐phenylalanine. PS‐CuPF6‐(S )‐BINAP resin exhibited good enantioselectivity toward L‐phenylalanine and D‐phenylalanine. The influence of phenylalanine concentration, pH, adsorption time, and temperature on the enantioselectivity of the resin were investigated. The results showed that the enantioselectivity of the resin increased with increasing the phenylalanine concentration, pH, and adsorption time, while it decreased with an increase in temperature. The causes for these influences are discussed. The highest enantioselectivity (α = 2.81) was obtained when the condition of phenylalanine concentration was 0.05 mmol/mL, pH was 8, adsorption time was 12 h, and temperature 5°C. The desorption test for removing D/L‐phenylalanine on PS‐CuPF6‐(S )‐BINAP resin was also investigated. The desorption ratios of D‐phenylalanine and L‐phenylalanine at pH of 1 were 95.7% and 94.3%, respectively. This result indicated that the PS‐CuPF6‐(S )‐BINAP resin could be regenerated by shaking with an acidic solution. The reusability of the PS‐CuPF6‐(S )‐BINAP resin was also assessed and the resin exhibited considerable reusability.  相似文献   
4.
Ru(S-BINAP) (Acac) (MNAA) (MeOH) (1) (where MNAA (2) = 2-(6′-methoxynaphth-2′-yl)acrylate anion), a highly effective catalyst for the asymmetric hydrogenation of 2-(6′-methoxynaphth-2′-yl) acrylic acid (3), was isolated from a dichloromethane/methanol (vol./vol. = 1/4) solution of Ru(S-BINAP) (Acac)2 and excess of 2-(6′-methoxynaphth-2′-yl)acrylic acid after the solution was exposed to visible light for 2 weeks. On side by side comparison studies, the rate of the hydrogenation of 3 catalyzed by 1 was found to be substantially faster than the same reaction catalyzed by Ru(S-BINAP) (OAc)2. The molecular structure of 1 was unambiguously characterized by single crystal X-ray diffraction.  相似文献   
5.
Adachi K  Chayama K  Watarai H 《Chirality》2006,18(8):599-608
The Pd(II)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP)-mediated chiral assembly of thioether-derivatised phthalocyanatomagnesium(II) compounds (MgPc(SR)8, SR is benzylthio (SBz) or benzhydrylthio (Bh)) was formed in toluene and at the toluene/water interface, and investigated by means of UV-Vis absorption and circular dichroism (CD) spectroscopy combined with the centrifugal liquid-membrane (CLM) devise. Interfacial tension measurements indicated that, in the presence of PdSO4 in the aqueous phase, BINAP ligand adsorbed as a monolayer forming Pd(II)BINAP2+ complex at the toluene/water interface. UV-Vis absorption spectrum of MgPc(SR)8 in the Q-band region was blue-shifted in toluene upon addition of [Pd(II)BINAP]Cl2, but red-shifted at the toluene/water interface when Pd(II)BINAP2+ was formed at the interface. These results suggested that MgPc(SR)8-Pd(II)BINAP complex formed H-aggregate (face-to-face type) in toluene solution and J-aggregate (end-to-end type) at the toluene/water interface, respectively. Moreover, the specific bisignate CD spectral pattern in both systems indicated that the aggregates of MgPc(SR)8-Pd(II)BINAP complexes were chirally twisted, well controlled by the chirality of BINAP ligand. Very interestingly, the morphology of MgPc(SBz)8-Pd(II)BINAP and MgPc(SBh)8-Pd(II)BINAP aggregates formed at the toluene/water interface were significantly different as the rodlike and the ribbonlike crystalline structure, respectively, as observed by a scanning electron microscopy (SEM). On the basis of these experimental results, we proposed schematic molecular models of the chiral aggregates of MgPc(SR)8-Pd(II)BINAP complexes and demonstrated the specific role of the toluene/water interface.  相似文献   
6.
A novel group of aryl methyl sulfones based on nonsteroidal anti-inflammatory compounds exhibiting a methyl sulfone instead of the acetic or propionic acid group was designed, synthesized and evaluated in vitro for inhibition against the human cyclooxygenase of COX-1 and COX-2 isoenzymes and in vivo for anti-inflammatory activity using the carrageenan induced rat paw edema model in rats. Also, in vitro chemosensitivity and in vivo analgesic and intestinal side effects were determined for defining the therapeutic and safety profile. Molecular modeling assisted the design of compounds and the interpretation of the experimental results. Biological assay results showed that methyl sulfone compounds 2 and 7 were the most potent COX inhibitors of this series and best than the corresponding carboxylic acids (methyl sulfone 2: IC50 COX-1?=?0.04 and COX-2?=?0.10?μM, and naproxen: IC50 COX-1?=?11.3 and COX-2?=?3.36?μM). Interestingly, the inhibitory activity of compound 2 represents a significant improvement compared to that of the parent carboxylic compound, naproxen. Further support to the results were gained by the docking studies which suggested the ability of compound 2 and 7 to bind into COX enzyme with low binding free energies.The improvement of the activity of some sulfones compared to the carboxylic analogues would be performed through a change of the binding mode or mechanism compared to the standard binding mode displayed by ibuprofen, as disclosed by molecular modeling studies. So, this study paves the way for further attention in investigating the participation of these new compounds in the pain inhibitory mechanisms. The most promising compounds 2 and 7 possess a therapeutical profile that enables their chemical scaffolds to be utilized for development of new NSAIDs.  相似文献   
7.
Yu Ma  Xiong Liu  Wenqi Zhou  Ting Cao 《Chirality》2019,31(3):248-255
In order to expand the application range of chiral diphosphine ligands, (S)‐BINAP, (S)‐SEGPHOS, and (S)‐MeO‐BIPHEP were employed as extractants to recognize DL‐mandelic acid. The results indicated that (S)‐SEGPHOS‐Cu exhibited considerable ability to recognize DL‐mandelic acid with operational enantioselectivity (α) of 2.677. The process of extraction of DL‐mandelic acid using (S)‐SEGPHOS‐Cu as extractant was systematically investigated. Performance factor (pf) was adopted to comprehensively evaluate the extraction. After optimization by response surface methodology (RSM), the optimal extraction condition is temperature of 5.5°C, (S)‐SEGPHOS‐Cu concentration of 3.0 mmol/L, and pH of 8.0. And the predicted and experimental maximum values of pf were 0.26374 and 0.26839, respectively.  相似文献   
8.
The need of long-term treatment for chronic HBV, emergence of drug-resistant viruses and inefficiency of currently approved therapies to eliminate covalently closed circular DNA (cccDNA), mandates identification of potent and selective inhibitors of HBV replication with novel mechanisms of action. Entecavir, a carbocyclic guanosine nucleoside analog, is the most potent inhibitor of HBV replication on the market. Moreover, the naturally occurring carbocyclic nucleosides aristeromycin are known for their wide range of antiviral activities.

In this research, we have utilized BINAP directed rhodium catalyzed reductive carbocyclization of 1,6-enynes (8a–b) through asymmetric hydrogenation which is an approach, not yet explored in carbocyclic sugar synthesis. Interestingly, we obtained exclusive anti-(9a) and Z-anti (9b) carbocyclic sugars. The new aristeromycin analogs (10a–b) with scaffold combination of entecavir and aristeromycin were then synthesized using the Mitsunobu reaction followed by deprotection.  相似文献   

1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号