首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  国内免费   6篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
The interleukin-2 receptor (IL-2R) is composed of at least three cell surface subunits, IL-2R alpha, IL-2R beta, and IL-2R gamma c. On activated T-cells, the alpha- and beta-subunits exist as a preformed heterodimer that simultaneously captures the IL-2 ligand as the initial event in formation of the signaling complex. We used BIAcore to compare the binding of IL-2 to biosensor surfaces containing either the alpha-subunit, the beta-subunit, or both subunits together. The receptor ectodomains were immobilized in an oriented fashion on the dextran matrix through unique solvent-exposed thiols. Equilibrium analysis of the binding data established IL-2 dissociation constants for the individual alpha- and beta-subunits of 37 and 480 nM, respectively. Surfaces with both subunits immobilized, however, contained a receptor site of much higher affinity, suggesting the ligand was bound in a ternary complex with the alpha- and beta-subunits, similar to that reported for the pseudo-high-affinity receptor on cells. Because the binding responses had the additional complexity of being mass transport limited, obtaining accurate estimates for the kinetic rate constants required global fitting of the data sets from multiple surface densities of the receptors. A detailed kinetic analysis indicated that the higher-affinity binding sites detected on surfaces containing both alpha- and beta-subunits resulted from capture of IL-2 by a preformed complex of these subunits. Therefore, the biosensor analysis closely mimicked the recognition properties reported for these subunits on the cell surface, providing a convenient and powerful tool to assess the structure-function relationships of this and other multiple subunit receptor systems.  相似文献   
2.
Receptor tyrosine kinases (RTKs) regulate many cellular processes, and Sprouty2 (Spry2) is known as an important regulator of RTK signaling pathways. Therefore, it is worth investigating the properties of Spry2 in more detail. In this study, we found that Spry2 is able to self-assemble into oligomers with a high-affinity KD value of approximately 16 nM, as determined through BIAcore surface plasmon resonance analysis. The three-dimensional (3D) structure of Spry2 was resolved using an electron microscopy (EM) single-particle reconstruction approach, which revealed that Spry2 is donut-shaped with two lip-cover domains. Furthermore, the method of energy dispersive spectrum obtained through EM was analyzed to determine the elements carried by Spry2, and the results demonstrated that Spry2 is a silicon- and iron-containing protein. The silicon may contribute to the electroconductivity of Spry2, and this property exhibits a concentration-dependent feature. This study provides the first report of a silicon- and iron-containing protein, and its 3D structure may allow us (1) to study the potential mechanism through the signal transduction is controlled by switching the electronic transfer on or off and (2) to develop a new type of conductor or even semiconductor using biological or half-biological hybrid materials in the future.  相似文献   
3.
Kinetic studies of macromolecular ligand-ligate interaction have generated ample interest since the advent of plasmon resonance based instruments like BIAcore. Most of the studies reported in literature assume a simple 1 : 1 Langmuir binding and complete reversibility of the system. However we observed that in a high affinity antigen-antibody system [human chorionic gonadotropin-monoclonal antibody (hCG-mAb)] dissociation is insignificant and the sensogram data cannot be used to measure the equilibrium and kinetic parameters. At low concentrations of mAb the complete sensogram could be fitted to a single exponential. Interestingly we found that at higher mAb concentrations, the binding data did not conform to a simple bimolecular model. Instead, the data fitted a two-step model, which may be because of surface heterogeneity of affinity sites. In this paper, we report on the global fit of the sensograms. We have developed a method by which a single two-minute sensogram can be used in high affinity systems to measure the association rate constant of the reaction and the functional capacity of the ligand (hCG) immobilized on the chip. We provide a rational explanation for the discrepancies generally observed in most of the BIAcore sensograms  相似文献   
4.
The role of tryptophan (Trp17) in immunoreactivity of P1, the diagnostically relevant peptide from a major allergen/antigen of Aspergillus fumigatus, was evaluated by chemically modifying tryptophanyl residue of P1. In BIAcore kinetic studies, unmodified P1 showed a 100-fold higher binding with ABPA (Allergic Bronchopulmonary Aspergillosis) patients’ IgG [KD (equilibrium dissociation constant) = 2.74 e−8 ± 0.13 M] than the controls’ IgG (KD = 2.97 e−6± 0.14 M), whereas chemically-modified P1 showed similar binding [KD patients’ IgG = 3.25 e−7± 0.16 M, KD controls’ IgG = 3.86 e−7± 0.19 M] indicating loss of specific immunoreactivity of P1 on tryptophan modification. Modified P1 showed loss of specific binding to IgE and IgG antibodies of ABPA patients in ELISA (Enzyme-Linked Immunosorbent Assay). The study infers that tryptophan residue (Trp17) is essential for immunoreactivity of P1.  相似文献   
5.
Eotaxin selectively binds CC chemokine receptor (CCR) 3, whereas monocyte chemotactic protein (MCP)-3 binds CCR1, CCR2, and CCR3. To identify the functional determinants of the chemokines, we generated four reciprocal chimeric chemokines-M10E9, M22E21, E8M11, and E20M23-by shuffling the N-terminus and N-loop of eotaxin and MCP-3. M22E21 and E8M11, which shared the N-loop from MCP-3, bound to monocytes with high affinity, and activated monocytes. In contrast, M10E9 and E20M23, which lacked the N-loop, failed to bind and transduce monocyte responses, identifying the N-loop of MCP-3 as the selectivity determinant for CCR1/CCR2. A BIAcore assay with an N-terminal peptide of CCR3 (residues 1-35) revealed that all chimeras except E20M23 exhibited varying degrees of binding affinity with commensurate chemotaxis activity of eosinophils. Surprisingly, E20M23 could neither bind the CCR3 peptide nor activate eosinophils, despite having both N-terminal motifs from eotaxin. These results suggest that the two N-terminal motifs of eotaxin must cooperate with other regions to successfully bind and activate CCR3.  相似文献   
6.
The BIAcore is a surface plasmon resonance (SPR) device used to measure rate constants, primarily for biochemical reactions. It consists of a flow channel containing one reactant adjoining a dextran gel containing the other. In order to explain anomalous measurements from the device, it has been proposed that some flow penetrates into the dextran layer, thus enhancing transport. A model is presented that accounts for such behavior, and typical velocity fields in the dextran are constructed. The system is analyzed in the limit of the surface reaction model, which corresponds to the limit of thin dextran layers. Asymptotic and singular perturbation techniques are used to analyze association and dissociation kinetics. Linear and nonlinear integral equations result from the analysis; explicit and asymptotic solutions are constructed for physically realizable cases. The results indicate that the effects of such penetration are bound to be small, regardless of the flow model used.  相似文献   
7.
The interactions of the extracellular matrix (ECM) proteins (laminin, elastin, fibronectin, type I collagen, thrombospondin and vitronectin) with the fimbriae of Porphyromonas gingivalis were analyzed based on surface plasmon resonance (SPR) spectroscopy using a biomolecular interaction analyzing system (BIAcore). The BIAcore profiles demonstrated that fimbriae specifically bound to all of the ECM proteins with significant association constants (Ka). Vitronectin showed the highest affinity to fimbriae (Ka = 3.79 x 10(6) M-1), while the affinity of laminin was lowest (Ka = 2.15 x 10(6) M-1). A synthetic peptide which is a potent inhibitor of fimbrial binding to salivary proteins was not significantly effective on the fimbrial interactions with the ECM proteins. Using polystyrene microtiter plates revealed that P. gingivalis fimbriae bound markedly to immobilized fibronectin and type I collagen, while the interaction of fimbriae with the other ECM proteins was not clearly demonstrated. These results suggest that interactions between fimbriae and the ECM proteins occur with specific affinities which are not mediated by mechanisms identical to those of salivary proteins. It was also shown that SPR spectroscopy is a useful method to analyze these specific interactions.  相似文献   
8.
9.
Recently developed scientific instrumentation featuring surface plasmon resonance detection allows the detection of biomolecular interactions in real time and without chemical modification of the binding partners. These biosensors are proving invaluable tools in protein engineering, particularly in research aimed at the isolation and improvement of protein binders and catalysts from macromolecular repertoires containing billions of individual members. This article reviews the use of biosensor technology for the isolation and characterization of engineered antibodies and enzymes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
10.
Heparin/heparan sulfate (HS) plays a key role in cellular adhesion. In this study, we utilized a 12‐mer random Escherichia coli cell surface display library to identify the sequence, which binds to heparin. Isolated insert analysis revealed a novel heparin‐binding peptide sequence, VRRSKHGARKDR, designated as HBP12. Our analysis of the sequence alignment of heparin‐binding motifs known as the Cardin–Weintraub consensus (BBXB, where B is a basic residue) indicates that the HBP12 peptide sequence contains two consecutive heparin‐binding motifs (i.e. RRSK and RKDR). SPR‐based BIAcore technology demonstrated that the HBP12 peptide binds to heparin with high affinity (KD = 191 nM ). The HBP12 peptide is found to bind the cell surface HS expressed by osteoblastic MC3T3 cells and promote HS‐dependent cell adhesion. Moreover, the surface‐immobilized HBP12 peptide on titanium substrates shows significant increases in the osteoblastic MC3T3‐E1 cell adhesion and proliferation. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号