首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  国内免费   1篇
  2019年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
Immunochemical techniques were used to investigate the protein-DNA crosslinking by ultraviolet (UV) and gamma radiation as well as 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) or cis- and trans-diamminedichloroplatinum II (cis-DDP and trans-DDP). Antisera to 0.35 M NaCl extract and 0.35 M NaCl residue of HeLa nuclei were employed. Both gamma and UV irradiation, exposure to cis- or trans-DDP and, to a lesser extent, BCNU, resulted in crosslinking of various antigens to the DNA. Although several antigens were crosslinked by all the employed agents, other exhibited agent-specific crosslinking patterns.  相似文献   
2.
Reversal of the drug-resistance phenotype in cancer cells usually involves the use of a chemomodulator that inhibits the function of a resistance-related protein. The aim of this study was to investigate the effects of MDR chemomodulators on human recombinant glutathione S-transferase (GSTs) activity. IC50 values for 15 MDR chemomodulators were determined using 1-chloro-dinitrobenzene (CDNB), cumene hydroproxide (CuOOH) and anticancer drugs as substrates. GSTs A1, P1 and M1 were inhibited by O6-benzylguanine (IC50s around 30 μM), GST P1-1 by sulphinpyrazone (IC50 = 66 μM), GST A1-1 by sulphasalazine, and camptothecin (34 and 74 μM respectively), and GST M1-1 by sulphasalazine, camptothecin and indomethacin (0.3, 29 and 30 μM respectively) using CDNB as a substrate. When ethacrynic acid (for GST P1-1), CuOOH (for A1-1) and 1,3-bis (2-chloroethyl)-1-nitrosourea (for GST M1-1) were used as substrates, these compounds did not significantly inhibit the GST isoforms. However, progesterone was a potent inhibitor of GST P1-1 (IC50 = 1.4 μM) with ethacrynic acid as substrate. These results suggest that the target of chemomodulators in vivo could be a specific resistance-related protein.  相似文献   
3.
Increasing numbers of cancer patients survive and live longer than five years after therapy, but very often side effects of cancer treatment arise at same time. One of the side effects, chemotherapy-induced cognitive impairment (CICI), also called “chemobrain” or “chemofog” by patients, brings enormous challenges to cancer survivors following successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, executive function and processing speed in cancer survivors with CICI, are some of the challenges that greatly impair survivors' quality of life. The molecular mechanisms of CICI involve very complicated processes, which have been the subject of investigation over the past decades. Many mechanistic candidates have been studied including disruption of the blood-brain barrier (BBB), DNA damage, telomere shortening, oxidative stress and associated inflammatory response, gene polymorphism of neural repair, altered neurotransmission, and hormone changes. Oxidative stress is considered as a vital mechanism, since over 50% of FDA-approved anti-cancer drugs can generate reactive oxygen species (ROS) or reactive nitrogen species (RNS), which lead to neuronal death. In this review paper, we discuss these important candidate mechanisms, in particular oxidative stress and the cytokine, TNF-alpha and their potential roles in CICI.  相似文献   
4.
Arsenic trioxide (As2O3) is an effective treatment for relapsed or refractory acute promyelocytic leukemia (APL). After the discovery of As2O3 as a promising treatment for APL, several studies investigated the use of As2O3 as a single agent in the treatment of solid tumors; however, its therapeutic efficacy is limited. Thus, the systematic study of the combination of As2O3 with other clinically used chemotherapeutic drugs to improve its therapeutic efficacy in treating human solid tumors is merited. In this study, we demonstrate for the first time, using isobologram analysis, that As2O3 exhibits a synergistic interaction with N,N′-bis(2-chloroethyl)-N-nitrosourea (BCNU). The synergistic augmentation of the cytotoxicity of As2O3 with BCNU is in part through the autophagic cell death machinery in human solid tumor cells. As2O3 and BCNU in combination produce enhanced cytotoxicity via the depletion of reduced glutathione (GSH) and augmentation of reaction oxygen species (ROS) production. Further analysis indicated that the extension of GSH depletion by this combined regimen occurs through the inhibition of the catalytic activity of glutathione reductase. Blocking ROS production with antioxidants or ROS scavengers effectively inhibits cell death and autophagy formation, indicating that redox-mediated autophagic cell death involves the synergism of As2O3 with BCNU. Taken together, this is the first evidence that BCNU could help to extend the therapeutic spectrum of As2O3. These findings will be useful in designing future clinical trials of combination chemotherapy with As2O3 and BCNU, with the potential for broad use against a variety of solid tumors.  相似文献   
5.
In rat heart mitochondria, auranofin, arsenite, diamide, and BCNU increase H2O2 formation, further stimulated by antimycin. However, in submitochondrial particles, H2O2 formation and oxygen uptake are not affected, indicating that these substances do not alter respiration. Mitochondria are also able to rapidly metabolize added H2O2 in a process partially prevented by BCNU or auranofin. Calcium does not modify the production of H2O2 and the mitochondrial thioredoxin system is not affected by calcium ions. Auranofin, arsenite, and diamide determine a large mitochondrial permeability transition, while BCNU and acetoacetate are ineffective. Thiols and glutathione are modified only by BCNU and diamide. However, all the compounds tested cause the release of cytochrome c that occurs also in the absence of mitochondrial swelling. In conclusion, the compounds utilized share the common feature of shifting the mitochondrial thiol-linked redox balance towards a more oxidized condition that is responsible of the observed effects.  相似文献   
6.
7.
8.
Glioblastoma, an aggressive brain tumor, has a poor prognosis and a high risk of recurrence. An improved chemotherapeutic approach is required to complement radiation therapy. Gold(I) complexes bearing phosphole ligands are promising agents in the treatment of cancer and disturb the redox balance and proliferation of cancer cells by inhibiting disulfide reductases. Here, we report on the antitumor properties of the gold(I) complex 1-phenyl-bis(2-pyridyl)phosphole gold chloride thio-β-d-glucose tetraacetate (GoPI-sugar), which exhibits antiproliferative effects on human (NCH82, NCH89) and rat (C6) glioma cell lines. Compared to carmustine (BCNU), an established nitrosourea compound for the treatment of glioblastomas that inhibits the proliferation of these glioma cell lines with an IC50 of 430 μM, GoPI-sugar is more effective by two orders of magnitude. Moreover, GoPI-sugar inhibits malignant glioma growth in vivo in a C6 glioma rat model and significantly reduces tumor volume while being well tolerated. Both the gold(I) chloro- and thiosugar-substituted phospholes interact with DNA albeit more weakly for the latter. Furthermore, GoPI-sugar irreversibly and potently inhibits thioredoxin reductase (IC50 4.3 nM) and human glutathione reductase (IC50 88.5 nM). However, treatment with GoPI-sugar did not significantly alter redox parameters in the brain tissue of treated animals. This might be due to compensatory upregulation of redox-related enzymes but might also indicate that the antiproliferative effects of GoPI-sugar in vivo are rather based on DNA interaction and inhibition of topoisomerase I than on the disturbance of redox equilibrium. Since GoPI-sugar is highly effective against glioblastomas and well tolerated, it represents a most promising lead for drug development. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.  相似文献   
9.
80%以上的肿瘤细胞为O~6-甲基鸟嘌吟-DNA甲基转移酶(O~6-MT)活性较高的Mer~+型,能够修复亚硝脲药物(NU)造成的DNA烷化损伤,对NU不敏感。本实验证明,用0.75,0.50和0.25mmol/L甲基亚硝脲(MNU)分别处理Mer~+型的HeLaS3,SMMC-7721和表现Mer~-型特征的Cc801,均能明显降低细胞中O~6-MT活性,从而显著提高了三种细胞对嘧啶亚硝脲和双氯乙亚硝脲的敏感性,提示降低O~6-MT活性是使用NU对Mer~+型肿瘤进行有效治疗的前提。  相似文献   
10.
A method for producing a viable non-dividing population of Chinese hamster V79 cells in suspension is described and the characteristics of the population outlined. The stationary population is more sensitive to methylating agents than a similar but exponentially growing population, the increased sensitivity arising from the loss of the shoulder from the survival curve. The extent of reaction of the agent with cellular macromolecules is similar in both cases. The repair capabilities of the two populations was examined. Non-semiconservative DNA repair synthesis occurs whether the cells are in a growth or no-growth condition when insulted. Repair of single-strand breaks, which arise following methylation, also proceeds up to the size of the replicon. The relationship of this stationary population to other no-growth conditions and its utility as a model for carcinogenesis studies is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号