首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  29篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Digital image processing of the pH-sensitive dye BCECF was used to examine the effects of high [K] media on cytoplasmic pH (pHi) of individual cells within isolated rabbit gastric glands. When cells were acidified to pHi 6.5 from the resting pHi of 7.2-7.3 and then exposed to solution containing 77 mM K plus amiloride (to block Na/H exchange), recovery to pHi 7.0 was observed. This K-induced alkalinization occurred in all cell types of the gland, including cells within antral glands that were devoid of parietal cells (PC). This process was independent of extracellular Na and Cl and was unaffected by: 5 mM Ba or 200 microM bumetanide, or acute treatment with either 500 microM ouabain or 100 microM cimetidine, histamine or carbachol. SCH28080, which inhibits the PC H/K-ATPase when used in the low microM range of concentrations, blocked the K effect on pHi at 100 microM but was ineffective at 1 microM. A similar pHi recovery was also stimulated by Li, Cs (both 72 mM), and Tl (10 mM), in the order Li greater than K greater than Cs greater than Tl (all in the presence of amiloride), and these alkalinizations were also blocked by 100 microM SCH28080. Parallel experiments were performed to test the effect of these ions on 14[C]-aminopyrine accumulation, an index of acid secretion by the H/K-ATPase at the lumenal membrane of the PC. There was no correlation between the rates of cation-induced pHi recovery from an acid load and H secretion as measured by the accumulation of aminopyrine. We conclude that the K- (and Cs- and Li-) dependent pHi recovery is mediated by a novel cation/H exchange mechanism that is distinct from the PC H/K-ATPase.  相似文献   
2.
Summary Changes in intracellular pH (pH i ) were measured using the pH indicator, BCECF, in principal cells from split opened cortical collecting tubules (CCTs) derived from rabbits maintained on a normal diet. This monolayer preparation has the advantage of allowing us to visualize the morphological differences in the two major cell types in this nephron segment under transmitted light. The visual identification of the cell types was verified using emission measurements taken from single principal and intercalated cells in the opened tubule which had been exposed to fluorescein isothiocyanate (FITC)-labeled peanut lectin. We confirmed the existence of an amiloride-sensitive Na/H exchange process activated during intracellular acidosis in principal cells. In addition, the exchanger was active under basal conditions and over a wide range of pH i . Because the exchanger was active under basal conditions we tested the hypothesis that changes in intracellular Na (Na i ) would alter pH i in a predictable way. Maneuvers designed to alter Na i were without significant effects within a 10-min time frame. Specifically, addition of 100 m ouabain to increase Na i or exposure of the tubules to 10–5 m amiloride to decrease luminal Na entry and reduce Na i did not have an effect on pH i . In some experiments we did observe however, after a 30-min exposure to ouabain, a small decrease in pH i . These results suggest that Na/H exchange is a major regulator of pH i in principal cells. However, regulation of Na transport by changes in pH i in principal cells of rabbit CCT via the activity of a Na/H exchanger do not seem to contribute to the feedback control of Na transport.This work was supported by U.S. Public Health Service grants DK27847 to L.G. Palmer and DK11489 to E.E. Windhager.  相似文献   
3.
A cellular suspension from rat submandibular glands was prepared with collagenase. The intracellular pH (pHi) was estimated with 2′,7′-bis-(2-carboxy-ethyl)-5(6)-carboxyfluorescein (BCECF). After exposure to NH4Cl, the pHi transiently increased (diffusion of NH3) and then dropped (influx of NH4+). Isoproterenol increased 2.5-fold the rate of NH4+ influx; bumetanide, an inhibitor of the Na+-K+-2Cl-cotransporter blocked the response to isoproterenol, confirming that the beta-adrenergic agonist stimulated the cotransporter. Forskolin (1 μmol/L) mimicked the response to isoproterenol. VIP (1 nmol/L-1 μmol/L) also increased the activity of the cotransporter. Cyclic AMP rather than calcium was the mediator of this activation since 1) carbachol which increased the [Ca2+]i fivefold increased the uptake of NH4+ by only 50%; 2) only high concentrations of VIP significantly increased the [Ca2+]i; 3) incubation in the presence of EGTA had no effect on the response to VIP; 4) low concentrations (nmol/L) of the neuropeptide increased the intracellular level of cAMP; and 5) the stimulation of the cotransporter by VIP, forskolin, and isoproterenol was inhibited by H8, an inhibitor of cAMP-dependent protein kinase. It is concluded that the Na+-K+-2Cl-cotransporter of rat submandibular glands is activated by isoproterenol, forskolin, and neuropeptides of the VIP family by a mechanism involving cAMP-dependent processes. The activation of the cotransporter by VIP could partly explain the potentiating effect of VIP on the response to sialagogues like substance P or muscarinic agonists.1  相似文献   
4.
Nigericin is an ionophore commonly used at the end of experiments to calibrate intracellularly trapped pH-sensitive dyes. In the present study, we explore the possibility that residual nigericin from dye calibration in one experiment might interfere with intracellular pH (pH i ) changes in the next. Using the pH-sensitive fluorescent dye 2′,7′-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF), we measured pH i in cultured rat renal mesangial cells. Nigericin contamination caused: (i) an increase in acid loading during the pH i decrease elicited by removing extracellular Na+, (ii) an increase in acid extrusion during the pH i increase caused by elevating extracellular [K+], and (iii) an acid shift in the pH i dependence of the background intracellular acid loading unmasked by inhibiting Na-H exchange with ethylisopropylamiloride (EIPA). However, contamination had no effect on the pH i dependence of Na-H exchange, computed by adding the pH i dependencies of total acid extrusion and background acid loading. Nigericin contamination can be conveniently minimized by using a separate line to deliver nigericin to the cells, and by briefly washing the tubing with ethanol and water after each experiment. Received: 14 October 1998/Revised: 2 March 1999  相似文献   
5.
We employed human red blood cells as a model system to check the affinity of MRP1 (Multidrug Resistance-associated Protein 1) towards fluorescein and a set of its carboxyl derivatives: 5/6-carboxyfluorescein (CF), 2,7-bis-(2-carboxyethyl)-5/6-carboxyfluorescein (BCECF) and calcein (CAL). We found significant differences in the characteristics of transport of the dyes tested across the erythrocyte membrane. Fluorescein is transported mainly in a passive way, while active efflux systems at least partially contribute to the transport of the other compounds. Inside-out vesicle studies revealed that active transport of calcein is masked by another, ATP-independent, transport activity. Inhibitor profiles of CF and BCECF transport are typical for substrates of organic anion transporters. BCECF is transported mainly via MRP1, as proven by the use of QCRL3, a monoclonal antibody known to specifically inhibit MRP1-mediated transport. Lack of effect of QCRL3 on CF uptake excludes the possibility of MRP1 being a transporter of this dye. No inhibition of CF accumulation by cGMP, thioguanine and 6-mercaptopurine suggests also that this fluorescent marker is not a substrate for MRP5, another ABC transporter identified in the human erythrocyte membrane.  相似文献   
6.
Intracellular pH (pH(i)) exerts considerable influence on cardiac contractility and rhythm. Over the last few years, extensive progress has been made in understanding the system that controls pH(i) in animal cardiomyocytes. In addition to the housekeeping Na(+)-H(+) exchanger (NHE), the Na(+)-HCO(3)(-) symporter (NHS) has been demonstrated in animal cardiomyocytes as another acid extruder. However, whether the NHE and NHS functions exist in human atrial cardiomyocytes remains unclear. We therefore investigated the mechanism of pH(i) recovery from intracellular acidosis (induced by NH(4)Cl prepulse) using intracellular 2',7'-bis(2-carboxethyl)-5(6)-carboxy-fluorescein fluorescence in human atrial myocardium. In HEPES (nominally HCO(3)(-)-free) Tyrode solution, pH(i) recovery from induced intracellular acidosis could be blocked completely by 30 microM 3-methylsulfonyl-4-piperidinobenzoyl, guanidine hydrochloride (HOE 694), a specific NHE inhibitor, or by removing extracellular Na(+). In 3% CO(2)-HCO(3)(-) Tyrode solution, HOE 694 only slowed the pH(i) recovery, while addition of HOE 694 together with 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (an NHS inhibitor) or removal of extracellular Na(+) inhibited the acid extrusion entirely. Therefore, in the present study, we provided evidence that two acid extruders involved in acid extrusion in human atrial myocytes, one which is HCO(3)(-) independent and one which is HCO(3)(-) dependent, are mostly likely NHE and NHS, respectively. When we checked the percentage of contribution of these two carriers to pH(i) recovery following induced acidosis, we found that the activity of NHE increased steeply in the acid direction, while that of NHS did not change. Our present data indicate for the first time that two acid extruders, NHE and NHS, exist functionally and pH(i) dependently in human atrial cardiomyocytes.  相似文献   
7.
The absorption of zwitterionic imino and amino acids, and related drugs, is an essential function of the small intestinal epithelium. This review focuses on the physiological roles of transporters recently identified at the molecular level, in particular SLC36A1, by identifying how they relate to the classical epithelial imino and amino acid transporters characterised in mammalian small intestine in the 1960s-1990s. SLC36A1 transports a number of d- and l-imino and amino acids, β- and γ-amino acids and orally-active neuromodulatory and antibacterial agents. SLC36A1 (or PAT1) functions as a proton-coupled imino and amino acid symporter in cooperation with the Na+/H+ exchanger NHE3 (SLC9A3) to produce the imino acid carrier identified in rat small intestine in the 1960s but subsequently ignored because of confusion with the IMINO transporter. However, it is the sodium/imino and amino acid cotransporter SLC6A20 which corresponds to the betaine carrier (identified in hamster, 1960s) and IMINO transporter (identified in rabbit and guinea pig, 1980s). This review summarises evidence for expression of SLC36A1 and SLC6A20 in human small intestine, highlights the differences in functional characteristics of the imino acid carrier and IMINO transporter, and explains the confusion surrounding these two distinct transport systems.  相似文献   
8.
Although Zn(2+) homeostasis in neurons is tightly regulated and its destabilization has been linked to a number of pathologies including Alzheimer's disease and ischemic neuronal death, the primary mechanisms affecting intracellular Zn(2+) concentration ([Zn(2+) ](i)) in neurons exposed to excitotoxic stimuli remain poorly understood. The present work addressed these mechanisms in cultured hippocampal neurons exposed to glutamate and glycine (Glu/Gly). [Zn(2+)](i) and intracellular Ca(2+) concentration were monitored simultaneously using FluoZin-3 and Fura-2FF, and intracellular pH (pH(i)) was studied in parallel experiments using 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Glu/Gly applications under Na(+)-free conditions (Na(+) substituted with N-methyl-D-glucamine(+)) caused Ca(2+) influx, pH(i) drop, and Zn(2+) release from intracellular stores. Experimental maneuvers resulting in a pH(i) increase during Glu/Gly applications, such as stimulation of Na(+) -dependent pathways of H(+) efflux, forcing H(+) efflux via gramicidin-formed channels, or increasing extracellular pH counteracted [Zn(2+)](i) elevations. In the absence of Na(+), the rate of [Zn(2+)](i) decrease could be correlated with the rate of pH(i) increase. In the presence of Na(+), the rate of [Zn(2+) ](i) decrease was about twice as fast as expected from the rate of pH(i) elevation. The data suggest that Glu/Gly-induced cytosolic acidification promotes [Zn(2+) ](i) elevations and that Na(+) counteracts the latter by promoting pH(i)-dependent and pH(i)-independent mechanisms of cytosolic Zn(2+) clearance.  相似文献   
9.
In this study, we have studied the expression, localization, and functionality of vacuolar-type H+-ATPase (vH+-ATPase) and Na+/K+-ATPase in the bovine rumen epithelium. Compared with the intracellular pH (pHi) of control rumen epithelial cells (REC; 7.06 ± 0.07), application of inhibitors selective for vH+-ATPase (foliomycin) and Na+/K+-ATPase (ouabain) reduced pHi by 0.10 ± 0.03 and 0.18 ± 0.03 pH-units, respectively, thereby verifying the existence of both functional proteins. Results from qRT-PCR and immunoblotting clearly confirm the expression of vH+-ATPase B subunit in REC. However, the amount of Na+/K+-ATPase mRNA and protein is tenfold and 11-fold of those of vH+-ATPase subunit B, respectively, reflecting a lower overall abundance of the latter in REC. Na+/K+-ATPase immunostaining has revealed the protein in the plasma membrane of all REC from the stratum basale to stratum granulosum, with the highest abundance in basal cells. In contrast, the vH+-ATPase B subunit has been detected in groups of cells only, mainly localized in the stratum spinosum and stratum granulosum of the epithelium. Furthermore, vH+-ATPase has been detected in the cell membrane and in intracellular pools. Thus, functional vacuolar-type H+ pumps are expressed in REC and probably play a role in the adaptation of epithelial transport processes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号