首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates.  相似文献   
2.
We have successfully cloned and expressed core-streptavidin in Escherichia coli. Core-streptavidin was expressed in shaker flask culture as a soluble protein, isolated by periplasmic extraction, purified by immobilized metal affinity chromatography column, and analyzed for its size, thermal stability, and biotin-binding activity. In Western blots using streptavidin-horseradish peroxidase (HRP) as a probe, we identified a contaminant that co-purified with core-streptavidin, identified as biotin carboxyl carrier protein (BCCP). Although BCCP cannot be detected on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it appears as a prominent band in Western blot when probed with streptavidin peroxidase conjugate. Based on the results from in vitro gel digestion, mass spectrometry and Mascot database search results, we confirmed the presence of BCCP. It was found that BCCP can complex with core-streptavidin and can dissociate when heated above 80°C. BCCP could be successfully removed and recovered by using core-streptavidin immobilized magnetic beads under mild conditions. In addition, the enriched fractions of core-streptavidin oligotetramers were separated, which may be the by-products of BCCP binding to core-streptavidin in various ratios. Finally, enzyme linked immunosorbent assay results have shown that the amount of biotin-HRP binding to core-streptavidin was higher compared to commercially available streptavidin.  相似文献   
3.
4.
5.
Biotin protein ligase (BPL; EC 6.3.4.15) catalyses the formation of biotinyl-5′-AMP from biotin and ATP, and the succeeding biotinylation of the biotin carboxyl carrier protein. We describe the crystal structures, at 2.4 Å resolution, of the class I BPL from the hyperthermophilic bacteria Aquifex aeolicus (AaBPL) in its ligand-free form and in complex with biotin and ATP. The solvent-exposed β- and γ-phosphates of ATP are located in the inter-subunit cavity formed by the N- and C-terminal domains. The Arg40 residue from the conserved GXGRXG motif is shown to interact with the carboxyl group of biotin and to stabilise the α- and β-phosphates of the nucleotide. The structure of the mutant AaBPL R40G in both the ligand-free and biotin-bound forms reveals that the mutated loop has collapsed, thus hindering ATP binding. Isothermal titration calorimetry indicated that the presence of biotin is not required for ATP binding to wild-type AaBPL in the absence of Mg2+, and the binding of biotin and ATP has been determined to occur via a random but cooperative process. The affinity for biotin is relatively unaffected by the R40G mutation. In contrast, the thermodynamic data indicate that binding of ATP to AaBPL R40G is very weak in the absence or in the presence of biotin. The AaBPL R40G mutant remains catalytically active but shows poor substrate specificity; mass spectrometry and Western blot studies revealed that the mutant biotinylates both the target A. aeolicus BCCPΔ67 fragment and BSA, and is subject to self-biotinylation.  相似文献   
6.
Cheng HL  Ji NJ  Peng YX  Shen X  Xu JH  Dong ZG  Wu CC 《Gene》2011,487(1):46-51
Acetyl-CoA carboxylase α (ACC1), the major regulatory enzyme of fatty acid biosynthesis, catalyzes the conversion of acetyl-CoA to malonyl-CoA. The full-length cDNA coding ACC1 isoform was cloned from liver of grass carp. The cDNA obtained was 7515 bp with a 7173 bp open reading frame encoding 2389 amino acids. The ACC1 protein has a calculated molecular weight of 269.2 kDa and isoelectric point of 6.23. Tissue distribution of ACC1 mRNA in brain, mesenteric adipose, spleen, white muscle and liver of grass carp was analyzed by real-time PCR method using β-actin as an internal control for cDNA normalization. The results showed that the expressions of ACC1 mRNA were detected in all examined tissues. Relative expression profile of ACC1 mRNA in liver normalized with β-actin level was 15, 92, 135 and 165-fold compared with the level in brain, white muscle, mesenteric adipose and spleen, respectively. In addition, we present evidence for the presence of two isoforms of ACC1 (265.7 kDa and 267.2 kDa) in grass carp liver that differ from the 269.2 kDa ACC1 by the absence of 34 and 15 amino acids. In conclusion, the liver is one of the main ACC1 producing tissues in grass carp and ACC1 gene was highly homologous to that of mammals.  相似文献   
7.
Lipids from microalgae have become a valuable product with applications ranging from biofuels to human nutrition. While changes in fatty acid (FA) content and composition under nitrogen limitation are well documented, the involved molecular mechanisms are poorly understood. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the FA synthesis and elongation pathway. Plastidial and cytosolic ACCases provide malonyl-CoA for de novo FA synthesis in the plastid and FA elongation in the endoplasmic reticulum, respectively. The present study aimed at investigating the expression of plastidial and cytosolic ACCase in Chromera velia and Isochrysis aff. galbana (TISO) and their impact on FA content and elongation level when grown under nitrogen-deplete conditions. In C. velia, plastidial ACCase was significantly upregulated during nitrogen starvation and with culture age, strongly correlating with increased FA content. Conversely, plastidial ACCase of I. aff. galbana was not differentially expressed in nitrogen-deplete cultures, but upregulated during the logarithmic phase of nitrogen-replete cultures. In contrast to plastidial ACCase, the cytosolic ACCase of C. velia was downregulated with culture age and nitrogen-starvation, strongly correlating with an increase in medium-chain FAs. In conclusion, the expression of plastidial and cytosolic ACCase changed with growth phase and nutrient status in a species-specific manner and nitrogen limitation did not always result in FA accumulation.  相似文献   
8.
Li YQ  Sueda S  Kondo H  Kawarabayasi Y 《FEBS letters》2006,580(6):1536-1540
Biotin carboxyl carrier protein (BCCP) is one subunit or domain of biotin-dependent enzymes. BCCP becomes an active substrate for carboxylation and carboxyl transfer, after biotinylation of its canonical lysine residue by biotin protein ligase (BPL). BCCP carries a characteristic local sequence surrounding the canonical lysine residue, typically -M-K-M-. Archaeon Sulfolobus tokodaii is unique in that its BCCP has serine replaced for the methionine C-terminal to the lysine. This BCCP is biotinylated by its own BPL, but not by Escherichia coli BPL. Likewise, E. coli BCCP is not biotinylated by S. tokodaii BPL, indicating that the substrate specificity is different between the two organisms.  相似文献   
9.
Steady-state kinetics for the reaction of Rhodobacter capsulatus bacterial cytochrome c peroxidase (BCCP) with its substrate cytochrome c(2) were investigated. The Rb. capsulatus BCCP is dependent on calcium for activation as previously shown for the Pseudomonas aeruginosa BCCP and Paracoccus denitrificans enzymes. Furthermore, the activity shows a bell-shaped pH dependence with optimum at pH 7.0. Enzyme activity is greatest at low ionic strength and drops off steeply as ionic strength increases, resulting in an apparent interaction domain charge product of -13. All cytochromes c(2) show an asymmetric distribution of surface charge, with a concentration of 14 positive charges near the exposed heme edge of Rb. capsulatus c(2) which potentially may interact with approximately 6 negative charges, localized near the edge of the high-potential heme of the Rb. capsulatus BCCP. To test this proposal, we constructed charge reversal mutants of the 14 positively charged residues located on the front face of Rb. capsulatus cytochrome c(2) and examined their effect on steady-state kinetics with BCCP. Mutated residues in Rb. capsulatus cytochrome c(2) that showed the greatest effects on binding and enzyme activity are K12E, K14E, K54E, K84E, K93E, and K99E, which is consistent with the site of electron transfer being located at the heme edge. We conclude that a combination of long-range, nonspecific electrostatic interactions as well as localized salt bridges between, e.g., cytochrome c(2) K12, K14, K54, and K99 with BCCP D194, D241, and D6, account for the observed kinetics.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号