首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   7篇
  国内免费   1篇
  2023年   4篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   7篇
  2012年   1篇
  2011年   7篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2002年   2篇
  1979年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
Emerging lines of evidence have shown that blockade of ubiquitin-proteasome system (UPS) activates autophagy. The molecular players that regulate the relationship between them remain to be elucidated. Bcl-2 associated athanogene 3 (BAG3) is a member of the BAG co-chaperone family that regulates the ATPase activity of heat shock protein 70 (HSP70) chaperone family. Studies on BAG3 have demonstrated that it plays multiple roles in physiological and pathological processes, including antiapoptotic activity, signal transduction, regulatory role in virus infection, cell adhesion and migration. Recent studies have attracted much attention on its role in initiation of autophagy. The current study, for the first time, demonstrates that proteasome inhibitors elicit noncanonical autophagy, which was not suppressed by inhibitors of class III phosphatidylinositol 3-kinase (PtdIns3K) or shRNA against Beclin 1 (BECN1). In addition, we demonstrate that BAG3 is ascribed to activation of autophagy elicited by proteasome inhibitors and MAPK8/9/10 (also known as JNK1/2/3 respectively) activation is also implicated via upregulation of BAG3. Moreover, we found that noncanonical autophagy mediated by BAG3 suppresses responsiveness of HepG2 cells to proteasome inhibitors.  相似文献   
2.
Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was apparently specific to LC3B because other ATG protein levels were not affected. BAG3 knockdown did not affect LC3B lipidation induced by nutrient deprivation or proteasome inhibition. We concluded that BAG3 maintains the basal amount of LC3B protein by controlling the translation of its mRNA in HeLa and HEK293 cells.  相似文献   
3.
BAG3 is constitutively expressed in multiple types of cancer cells and its high expression is associated with tumour progression and poor prognosis of PDAC . However, little is known about the role of BAG3 in the regulation of stromal microenvironment of PDAC. The current study demonstrated that beside PDAC tumour cells, BAG3 was also expressed in some activated stroma cells in PDAC tissue, as well as in activated PSCs. In addition, the current study demonstrated that BAG3 expression in PSCs was involved in maintenance of PSCs activation and promotion of PDACs invasion via releasing multiple cytokines. The current study demonstrated that BAG3‐positive PSCs promoted invasion of PDACs via IL‐8, MCP1, TGF‐β2 and IGFBP2 in a paracrine manner. Furthermore, BAG3 sustained PSCs activation through IL‐6, TGF‐β2 and IGFBP2 in an autocrine manner. Thereby, the current study provides a new insight into the involvement of BAG3 in remodelling of stromal microenvironment favourable for malignant progression of PDAC, indicating that BAG3 might serve as a potential target for anti‐fibrosis of PDAC.  相似文献   
4.
目的:BAG结构域(BAG domain,BD)为BAG家族蛋白的基本功能结构域,通过对BAG家族蛋白6个成员的9个BDs的相互作用蛋白进行分析,以探明不同BD相互作用蛋白的异同点并为研究BAG家族蛋白多样性生物功能的分子机制提供理论依据。方法:构建p-GEX-4T2-BDs重组子并转化E.coli BL21(DE3)经IPTG诱导表达GST-BDs融合蛋白并纯化。采用GST pulldown技术联合高效液相色谱串联质谱(LC-MS/MS)的策略对BDs相互作用蛋白进行定性定量分析。最后,用DAVID(The Database for Annotation,Visualization and Intergrated Discovery)和cytoscape对BDs相互作用蛋白进行GO(Gene Ontology)功能分析及KEGG(Kyoto Enyoolpedia of Genes and Genomes)通路分析。结果:在Hela细胞的胞浆蛋白中总共鉴定到370个潜在的BDs相互作用蛋白,主要为核糖体蛋白(ribosomal proteins)、翻译起始因子(Eukaryotic translation initiation factors)、翻译延长因子(Eukaryotic translation elongation factors)、泛素化-蛋白酶体相关蛋白(ubiquitin-proteasome associated proteins)及HSP40家族蛋白。GO功能富集分析结果显示,BDs相互作用蛋白涉及多种生物学功能,包括细胞内蛋白质质量控制(protein quality control)、糖代谢(glycolysis)、免疫调控(immune response)、应激反应(stress response)、细胞周期(cell cycle)等。KEGG通路分析结果表明BDs相互作用蛋白参与多条细胞内重要的信号通路,包括FGF信号通路(FGF signaling pathway)、EGF受体信号通路(EGF receptor signaling pathway)、PDGF信号通路(PDGF signaling pathway)、Ras通路(Ras pathway)等。结论:BAG家族蛋白不同成员的BD所介导的蛋白-蛋白相互作用既有共性又有特异性,BAG家族蛋白通过BDs介导多种蛋白相互作用并参与细胞内多条重要的信号通路来调控细胞内蛋白质稳态、糖代谢、免疫反应、应激反应、细胞周期等过程。  相似文献   
5.
Members of the transforming growth factor-β (TGF-β) superfamily participate in numerous biological phenomena in multiple tissues, including in cell proliferation, differentiation, and migration. TGF-β superfamily proteins therefore have prominent roles in wound healing, fibrosis, bone formation, and carcinogenesis. However, the molecular mechanisms regulating these signaling pathways are not fully understood. Here, we describe the regulation of bone morphogenic protein (BMP) signaling by Bat3 (also known as Scythe or BAG6). Bat3 overexpression in murine cell lines suppresses the activity of the Id1 promoter normally induced by BMP signaling. Conversely, Bat3 inactivation enhances the induction of direct BMP target genes, such as Id1, Smad6, and Smad7. Consequently, Bat3 deficiency accelerates the differentiation of primary osteoblasts into bone, with a concomitant increase in the bone differentiation markers Runx2, Osterix, and alkaline phosphatase. Using biochemical and cell biological analyses, we show that Bat3 inactivation sustains the C-terminal phosphorylation and nuclear localization of Smad1, 5, and 8 (Smad1/5/8), thereby enhancing biological responses to BMP treatment. At the mechanistic level, we show that Bat3 interacts with the nuclear phosphatase small C-terminal domain phosphatase (SCP) 2, which terminates BMP signaling by dephosphorylating Smad1/5/8. Notably, Bat3 enhances SCP2–Smad1 interaction only when the BMP signaling pathway is activated. Our results demonstrate that Bat3 is an important regulator of BMP signaling that functions by modulating SCP2–Smad interaction.  相似文献   
6.
7.
The Hsc/Hsp70 co-chaperones of the BAG (Bcl-2-associated athanogene) protein family are modulators of protein quality control. We examined the specific roles of BAG1 and BAG3 in protein degradation during the aging process. We show that BAG1 and BAG3 regulate proteasomal and macroautophagic pathways, respectively, for the degradation of polyubiquitinated proteins. Moreover, using models of cellular aging, we find that a switch from BAG1 to BAG3 determines that aged cells use more intensively the macroautophagic system for turnover of polyubiquitinated proteins. This increased macroautophagic flux is regulated by BAG3 in concert with the ubiquitin-binding protein p62/SQSTM1. The BAG3/BAG1 ratio is also elevated in neurons during aging of the rodent brain, where, consistent with a higher macroautophagy activity, we find increased levels of the autophagosomal marker LC3-II as well as a higher cathepsin activity. We conclude that the BAG3-mediated recruitment of the macroautophagy pathway is an important adaptation of the protein quality control system to maintain protein homeostasis in the presence of an enhanced pro-oxidant and aggregation-prone milieu characteristic of aging.  相似文献   
8.
Peng Liu  Bei Xu  Hua Lu 《FEBS letters》2009,583(2):401-406
Proteasome inhibition has emerged as a powerful option for the treatment of a number of malignancies including leukemias. However, Bortezomib showed limited single-agent activity for patients with leukemia. Here, we report for the first time that Bortezomib up-regulated a novel antiapoptotic protein, BAG3, in human leukemic cells. BAG3 gene knockdown with shRNA greatly potentiated the generation of apoptosis by Bortezomib in leukemia cells. Furthermore, BAG3 silencing enhanced the antitumor activity of Bortezomib dramatically in a nude mouse model. Our results indicate that knocking down BAG3 gene is a promising new approach to enhance the therapeutic potency of Bortezomib in leukemia.  相似文献   
9.
BAG-1, a multifunctional protein, interacts with a plethora of cellular targets where the interaction with HSC70 and HSP70, is considered vital. Structural studies have demonstrated the C-terminal of BAG-1 forms a bundle of three alpha-helices of which helices 2 and 3 are directly involved in binding to the chaperones. Here we found peptides derived from helices 2 and 3 of BAG-1 interfered with BAG-1:HSC70 binding. We confirmed that a 12 amino-acid peptide from helix 2 directly interacted with HSC70 and when introduced into MCF-7 and ZR-75-1 cells, these peptides inhibited their growth. In conclusion, we have identified a small domain within BAG-1 which appears to play a critical role in the interaction with HSC70.

Structured summary

MINT-7265269, MINT-7265296, MINT-7265324, MINT-7265339, MINT-7265351, MINT-7265364, MINT-7265483, MINT-7265464, MINT-7265310: HSC70 (uniprotkb:P11142) binds (MI:0407) to BAG1 (uniprotkb:Q99933) by peptide array (MI:0081)MINT-7265281: peptide 15L (uniprotkb:Q99933) binds (MI:0407) to HSC70 (uniprotkb:P11142) by surface plasmon resonance (MI:0107)  相似文献   
10.
BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号