首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  国内免费   1篇
  2013年   2篇
  2009年   2篇
  2000年   1篇
  1998年   1篇
  1993年   2篇
  1991年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Human M-proinsulin was cleaved by trypsin at the R31R32–E33 and K64R65–G66 bonds (B/C and C/A junctions), showing the same cleavage specificity as exhibited by prohormone convertases 1 and 2 respectively. Buffalo/bovine M-proinsulin was also cleaved by trypsin at the K59R60–G61 bond but at the B/C junction cleavage occurred at the R31R32–E33 as well as the R31–R32E33 bond. Thus, the human isoform in the native state, with a 31 residue connecting C-peptide, seems to have a unique structure around the B/C and C/A junctions and cleavage at these sites is predominantly governed by the structure of the proinsulin itself. In the case of both the proinsulin species the cleavage at the B/C junction was preferred (65%) over that at the C/A junction (35%) supporting the earlier suggestion of the presence of some form of secondary structure at the C/A junction. Proinsulin and its derivatives, as natural substrates for trypsin, were used and mass spectrometric analysis showed that the kcat./Km values for the cleavage were most favourable for the scission of the bonds at the two junctions (1.02 ± 0.08 × 105 s− 1 M− 1) and the cleavage of the K29–T30 bond of M-insulin-RR (1.3 ± 0.07 × 105 s− 1 M− 1). However, the K29–T30 bond in M-insulin, insulin as well as M-proinsulin was shielded from attack by trypsin (kcat./Km values around 1000 s− 1 M− 1). Hence, as the biosynthetic path follows the sequence; proinsulin → insulin-RR → insulin, the K29–T30 bond becomes shielded, exposed then shielded again respectively.  相似文献   
2.
Bark of elderberry (Sambucus nigra) contains a galactose (Gal)/N-acetylgalactosamine (GalNAc)-specific lectin (SNA-II) corresponding to slightly truncated B-chains of a genuine Type-II ribosome-inactivating protein (Type-II RIPs, SNA-V), found in the same species. The three-dimensional X-ray structure of SNA-II has been determined in two distinct crystal forms, hexagonal and tetragonal, at 1.90 A and 1.35 A, respectively. In both crystal forms, the SNA-II molecule folds into two linked beta-trefoil domains, with an overall conformation similar to that of the B-chains of ricin and other Type-II RIPs. Glycosylation is observed at four sites along the polypeptide chain, accounting for 14 saccharide units. The high-resolution structures of SNA-II in complex with Gal and five Gal-related saccharides (GalNAc, lactose, alpha1-methylgalactose, fucose, and the carcinoma-specific Tn antigen) were determined at 1.55 A resolution or better. Binding is observed in two saccharide-binding sites for most of the sugars: a conserved aspartate residue interacts simultaneously with the O3 and O4 atoms of saccharides. In one of the binding sites, additional interactions with the protein involve the O6 atom. Analytical gel filtration, small angle X-ray scattering studies and crystal packing analysis indicate that, although some oligomeric species are present, the monomeric species predominate in solution.  相似文献   
3.
The effects of ribosome-inactivating proteins (RIPs) from Ricinus communis and from Viscum album on the water permeability, Pf, and the surface dielectric constant, epsilon, of model membranes were studied. Pf was calculated from microelectrode measurements of the ion concentration distribution in the immediate vicinity of a planar membrane, and epsilon was obtained from the fluorescence of dansyl phosphatidylethanolamine incorporated into unilamellar vesicles. Pf and epsilon of fully saturated phosphatidylcholine membranes were affected only in the presence of a lectin receptor (monosialoganglioside, GM1) in the bilayer. It is suggested that the membrane area occupied by clustered lectin-receptor complexes is markedly less permeable to water. Protein binding to the receptor was not a prelude for hydrophobic lipid-protein interactions when the membranes were formed from a mixture of natural phospholipids with a high content of unsaturated fatty acids. These membranes, characterized by a high initial water permeability, were found to interact with the RIPs unspecifically. From a decrease of both Pf and epsilon it was concluded that not only water partitioning but also protein adsorption correlates with looser packing of polyunsaturated lipids at the lipid-water interface.  相似文献   
4.
The presence of 10-6 M bovine insulin in chemically defined nutrient medium prevented cell death and improved cell proliferation of the ciliate Tetrahymena pyriformis when inoculated at low initial cell density. The action of insulin was found to be restricted to the 22-30 fragment of the B-chain. These results suggest that small peptides are involved in regulation of cell survival and cell proliferation in Tetrahymena pyriformis.  相似文献   
5.
将化学合成的RGD肽(Arg-Gly-Asp)编码寡核苷酸与尿激酶B链cDNA相连成为融合基因后,克隆至原核表达质粒pBV220中,在PRPL自动子的作用下,经42℃热诱导,在大肠杆菌DH5α中获得了融合基因的表达,其表达量占菌体总蛋白的9.2%,表达产物以无活性的包含体形式存在。经变复性处理得到纯化的融合基因的表达产物,经Western-blotting分析表明产物具有与天然尿激酶相似的抗原性,  相似文献   
6.

Background

Snake venoms are rich sources of bioactive molecules, and several venom-derived proteins have entered clinical trials for use in ischemic disorders; however, late-stage failure of a recent drug candidate due to low in vivo efficacy demonstrated the need for new sources of fibrinogenolytic drug candidates.

Methods

A 51.3 kDa thrombin-like serine protease (Russelobin) purified from the venom of Russell's Viper (Daboia russelii russelii) was subjected to extensive biochemical characterization, including N-terminal sequencing, substrate specificity, kinetic and inhibitor assays, glycosylation analysis and stability assays. Toxicity and pathology analyses were conducted in NSA mice.

Results

Russelobin has extensive N-terminus identity with a beta-fibrinogenase-like serine proteinase precursor from Daboia russelii siamensis venom, a mass of 51.3 kDa and contains extensive N-linked oligosaccharides. Serine protease inhibitors and heparin significantly decreased activity, with much lower inhibition by DTT, antithrombin-III and α2-macroglobulin. Russelobin preferentially released FPA and slowly released FPB from human fibrinogen, forming a labile fibrin clot readily hydrolyzed by plasmin. The partially deglycosylated enzyme showed significantly lower activity toward fibrinogen and less resistance against neutralization by plasma α2MG and antithrombin-III. Russelobin was non-cytotoxic, non-lethal and produced no histopathologies in mice, and it demonstrated in vivo dose-dependent defibrinogenating activity.

Conclusions

Russelobin is an A/B fibrinogenase with high specificity toward fibrinogen, both in vitro and in vivo. Extensive glycosylation appears to protect the molecule against endogenous protease inhibitors, prolonging its in vivo efficacy.

General significance

Due to its low toxicity, stability and activity as a defibrinogenating agent, Russelobin shows high potential for cardiovascular drug development.  相似文献   
7.
Previously, we developed an α2-6-sialic acid (Sia)-specific lectin (SRC) starting from an R-type galactose-specific lectin C-terminal domain. However, it showed relatively low affinity because of its monovalency. Here, we engineered a tandem repeat construct (SRC2) showing substantial affinity for α2,6-sialylated N-glycans (in the order of 10−6 M in Kd), almost comparable to a natural α2-6Sia-specific lectin from Sambucus sieboldiana (SSA). Notably, its binding to branched N-glycans was found to be more selective than SSA. Nevertheless, SRC2 showed no apparent hemagglutinating activity, while it exerted strong erythrocyte-binding activity. This unique feature will help flow cytometry analysis, where usual lectins including SSA agglutinate cells. Some other biochemical properties investigated for SRC2, e.g., high productivity in bacteria and easy release of captured glycoproteins with lactose have demonstrated versatility of this mutant protein as a powerful tool for sialoglycomics.  相似文献   
8.
We report the synthesis and biological evaluation of five insulin analogues in which one or both of the B-chain tyrosine residues have been substituted. [B16 Phe]insulin and [B16 Trp]insulin display a very modest reduction in potency (c. 65%) relative to porcine insulin; [B26 Phe]insulin is less active (30–50%), and the doubly substituted [B16 Phe, B26 Phe]insulin displays still lower potency (c. 35%). The further substitution of Asp for B10 His in [B16 Phe, B26 Phe]insulin raises its activity to approximately twofold greater than natural insulin, an increase of approximately fivefold over the parent compound. We conclude that the bulk and/or aromaticity of the amino acid residue at position B16, but not its hydrogen-bonding capacity, contributes to the biological activity of the hormone. We further conclude that hydrogen-bonding capacity or special side-chain packing characteristics are required at the B26 position for insulin to display high biological activity.  相似文献   
9.
Hybrid molecules were prepared from the A- and B-chains of the two toxic lectins ricin and modeccin by dialyzing mixtures of isolated chains to allow a disulfide bridge to be formed between them. Whereas the hybrid consisting of ricin A-chain and modeccin B-chain was non-toxic, the converse hybrid, modeccin A-chain/ricin B-chain, was even more toxic to Vero cells than were the parent toxins, native ricin and modeccin. A number of drugs (NH4Cl, monensin, trifluoperazine, verapamil, ionophore A23187) which protect cells against modeccin, but not against ricin, protected to some extent against the toxic hybrid, but less so than against native modeccin. The possibility is discussed that the modeccin A-chain of the hybrid may enter the cytosol by two routes, one which is highly efficient and identical to that used by native modeccin and another less efficient one which cannot be used by native modeccin.  相似文献   
10.
To analyze the influence of ricin B-chain on the toxicity of hybrid-protein conjugates, the rate of cellular uptake of conjugates, and the rate at which ricin A-chain (RTA) is delivered to the cytoplasm, we have constructed toxic hybrid proteins consisting of epidermal growth factor (EGF) coupled in disulfide linkage either to ricin or to RTA. EGF-ricin is no more toxic on A431 cells than EGF-RTA. The two conjugates demonstrate similar kinetics of cellular uptake (defined as antibody irreversible toxicity). EGF-RTA and EGF-ricin, like ricin, required a 2-2 1/2 hour period at 37 degrees before the onset of protein synthesis inhibition occurred. Our results suggest that RTA determines the processes which carry it, either in conjugate or toxin, from the plasma membrane binding site to the cytoplasm following endocytosis, and the ricin B chain is not required for these processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号