首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   12篇
  2023年   5篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   7篇
  2016年   3篇
  2015年   8篇
  2014年   11篇
  2013年   12篇
  2012年   10篇
  2011年   10篇
  2010年   8篇
  2009年   5篇
  2008年   18篇
  2007年   9篇
  2006年   8篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2001年   2篇
  2000年   5篇
  1999年   7篇
  1998年   2篇
  1997年   8篇
  1996年   7篇
  1995年   4篇
  1994年   14篇
  1993年   8篇
  1992年   3篇
  1991年   9篇
  1990年   9篇
  1989年   9篇
  1988年   7篇
  1987年   9篇
  1986年   5篇
  1985年   9篇
  1984年   6篇
  1983年   9篇
  1982年   14篇
  1981年   8篇
  1980年   10篇
  1978年   2篇
  1976年   5篇
  1975年   1篇
  1974年   3篇
  1973年   6篇
  1972年   3篇
  1971年   4篇
排序方式: 共有346条查询结果,搜索用时 46 毫秒
1.
This study was designed to determine if the known decrease in slow axonal transport of proteins in the sciatic nerve of experimentally diabetic rats is related to altered phosphorylation of neurofilament proteins (NFPs). Rats were rendered diabetic with 50 mg/kg of streptozotocin, i.p. At 3 and 6 weeks later, NFPs were prepared from spinal cord. The in vivo phosphorylation state of NFPs was examined by using phosphate-dependent (RT97) and -independent (RMd09) antibodies against high-molecular-mass NFPs on Western blots. Neurofilament-associated kinase activity was also measured in vitro by incubation of NFPs with [32P]ATP. Phosphorylation of all three NFPs (high, medium, and low molecular mass) occurred, as confirmed by gel electrophoresis and autoradiography. At 30 min of incubation, protein-bound radioactivity in NFPs from diabetic animals was reduced to 86.7 +/- 3.4 and 54.3 +/- 19.6% of that in nondiabetic animals at 3 and 6 weeks of diabetes, respectively (p less than 0.001 and p less than 0.05, respectively). NFPs were also incubated with acid phosphatase and rephosphorylated. Results showed that the increased in vivo phosphorylation contributed to the decreased in vitro phosphorylation. Extraction of protein kinases and addition back to the NFPs revealed, in addition, a reduced activity in the diabetic animals of the protein kinases measured in vitro.  相似文献   
2.
Following an intraocular injection of myo-[2-3H]inositol, the axonal transport of labelled water-soluble substances and inositol phospholipids was investigated. Evidence was obtained for a rapid axonal transport of a relatively small amount of labelled inositol phospholipids. In contrast to other axonally transported phospholipids, there was no significant accumulation of labelled, rapidly transported inositol phospholipids in the nerve terminal region at later time intervals following the isotope administration.  相似文献   
3.
Axonal transport of peptidylglycine alpha-amidating monooxygenase (PAM) activity was studied in rat sciatic nerves from 12 to 120 h after double ligations. The anterograde axonal transport increased and reached a plateau between 48 and 72 h and then decreased. The flow rate was 100 mm/day, and the molecular mass of the active entity was 70 kDa, which was determined by gel filtration. In contrast, there was no evidence for significant retrograde axonal transport. Anterograde axonal transport of immunoreactive cholecystokinin, a carboxy-terminal-amidated putative neuropeptide, was also found. These results suggest that PAM is transported by a rapid axonal flow and may play a role as a processing enzyme during transport or in the terminals of rat sciatic nerves.  相似文献   
4.
The distribution of axonally transported gangliosides and glycoproteins along the sciatic nerve was examined from 3 h to 4 weeks following injection of[3H]glucosamine into the fifth lumbar dorsal root ganglion of adult rats. Incorporation of labeled precursor into these glycoconjugates reached a maximal level in the ganglion within 6 h. Outflow patterns of radioactivity for glycoproteins showed a well-defined crest with a transport rate of approximately 330 mm/day. In contrast, the crest of transported gangliosides was continuously attenuated, implying a significant deposition along the axon, and an alternative method of calculating velocity was required. Analysis of accumulation of labeled material at double ligatures demonstrated both anterograde and retrograde transport of glycoproteins and gangliosides and allowed for the calculation of an anterograde transport rate of about 270 mm/day for each. Additional evidence of ganglioside transport is provided in that the TLC pattern of transported radioactive gangliosides accumulating at a ligature is significantly different from the pattern seen in the dorsal root ganglion or following intraneural administration of the labeled precursor. These data indicate that gangliosides are transported at the same rapid rate as glycoproteins but are subject to a more extensive exchange with stationary material than are glycoproteins.  相似文献   
5.
A re-evaluation of the cytology of cat Pacinian corpuscles   总被引:1,自引:0,他引:1  
Summary The ultrastructure of cat mesenteric Pacinian corpuscles in cross and longitudinal sections has been examined. The terminal ends of lamellar cells of the inner core have been identified in longitudinal sections through the proximal portion of the inner core. These terminal bulbous expansions contain characteristic concentric membranes of rough endoplasmic reticulum and in some cases masses of oval membranous inclusions. The central axon as seen in cross section is oval in profile, having X-(short) and Y-(long) axes, and each axonal face is characterized by specializations of the axolemma. At the X-axis, the inner lamellae of the inner core tightly abut a smooth axolemma, with no intervening connective tissue matrix, in a manner reminiscent of a neuroepithelium. The axolemma of the Y-axis has numerous axonal spines (microspikes) that project into the cleft in the inner core. The extent of the axolemma having axonal spines can only be appreciated in longitudinal sections. The clefts contain a specialized connective tissue with elastic and collagen fibrils. The connective tissue compartment of fibers and matrix separating individual inner core lamellae is unique, in that it contains extremely thin collagen fibrils measuring approximately 15 nm in diameter. The diameter of collagen fibrils increases as the cleft is approached. Here the fibrils resemble typical endoneural collagen.  相似文献   
6.
Neurons require a large amount of intracellular transport. Cytoplasmic polypeptides and membrane-bounded organelles move from the perikaryon, down the length of the axon, and to the synaptic terminals. This movement occurs at distinct rates and is termed axonal transport. Axonal transport is divided into the slow transport of cytoplasmic proteins including glycolytic enzymes and cytoskeletal structures and the fast transport of membrane-bounded organelles along linear arrays of microtubules. The polypeptide compositions of the rate classes of axonal transport have been well characterized, but the underlying molecular mechanisms of this movement are less clear. Progress has been particularly slow toward understanding force-generation in slow transport, but recent developments have provided insight into the molecular motors involved in fast axonal transport. Recent advances in the cellular and molecular biology of one fast axonal transport motor, kinesin, have provided a clearer understanding of organelle movement along microtubules. The availability of cellular and molecular probes for kinesin and other putative axonal transport motors have led to a reevaluation of our understanding of intracellular motility.  相似文献   
7.
Axonal Transport of Glycoconjugates in the Rat Visual System   总被引:7,自引:7,他引:0  
Long-Evans rats at 45 days of age were injected intraocularly with 25 mu Ci of [3H]glucosamine. Incorporation of radioactivity into retinal gangliosides, glycoproteins, and glycosaminoglycans (GAGs) was determined at various times after injection. Portions of all three classes of radioactive macromolecules were committed to rapid axonal transport in the retinal ganglion cells. With respect to gangliosides about 60% of those synthesized in the retina were retained in that structure, 30% were committed to transport to regions containing the nerve terminal structures (lateral geniculate body and superior colliculus), and about 10% were deposited in stationary structures of the axons (optic nerve and tract). With the exception of ganglioside GD3 the molecular species distribution of gangliosides synthesized in the retina matched that committed to transport. In contrast to gangliosides a smaller fraction of newly synthesized retinal glycoprotein (less than 12% of that synthesized in the retina) was committed to rapid transport to nerve ending regions and only about 0.5% was retained in the nerve and tract. The molecular-weight distribution of glycoproteins committed to transport differed quantitatively from that of the retina. With respect to GAGs an even smaller portion (1-2%) of that synthesized in the retina was committed to rapid transport; of this portion almost all was recovered in nerve terminal-containing structures. A constant proportion of each retinal GAG species was transported to the superior colliculus. We suggest that most of the retinal gangliosides are synthesized in neurons and preferentially in ganglion cells (possibly a function of the large surface membrane area supported by these cells). Subcellular fractionation experiments indicated that transported gangliosides, glycoproteins, and GAGs may be preferentially distributed into different subcellular compartments.  相似文献   
8.
Abstract: After the goldfish optic nerve was crushed, the total amount of protein in the nerve decreased by about 45% within 1 week as the axons degenerated, began to recover between 2 and 5 weeks as axonal regeneration occurred, and had returned to nearly normal by 12 weeks. Corresponding changes in the relative amounts of some individual proteins were investigated by separating the proteins by two-dimensional gel electrophoresis and performing a quantitative analysis of the Coomassie Brilliant Blue staining patterns of the gels. In addition, labelling patterns showing incorporation of [3H]proline into individual proteins were examined to differentiate between locally synthesized proteins (presumably produced mainly by the glial cells) and axonal proteins carried by fast or slow axonal transport. Some prominent nerve proteins, ON1 and ON2 (50–55 kD, pI ~6), decreased to almost undetectable levels and then reappeared with a time course corresponding to the changes in total protein content of the nerve. Similar changes were seen in a protein we have designated NF (~130 kD, pI ~5.2). These three proteins, which were labelled in association with slow axonal transport, may be neurofilament constituents. Large decreases following optic nerve crush were also seen in the relative amounts of α- and β-tubulin, which suggests that they are localized mainly in the optic axons rather than the glial cells. Another group of proteins, W2, W3, and W4 (35–45 kD, pI 6.5–7.0), which showed a somewhat slower time course of disappearance and were intensely labelled in the local synthesis pattern, may be associated with myelin. A small number of proteins increased in relative amount following nerve crush. These included some, P1 and P2 (35–40 kD, pIs 6.1–6.2) and NT (~50 kD, pI ~5.5), that appeared to be synthesized by the glial cells. Increases were also seen in one axonal protein, B (~45 kD, pI ~4.5), that is carried by fast axonal transport, as well as in two axonal proteins, HA1 and HA2 (~60 and 65 kD respectively, pIs 4.5–5.0), that are carried mainly by slow axonal transport. Other proteins, including actin, that showed no net changes in relative amount (but presumably changed in absolute amount in direct proportion to the changes in total protein content of the nerve), are apparently distributed in both the neuronal and nonneuronal compartments of the nerve.  相似文献   
9.
Cholesterol Synthesis and Nerve Regeneration   总被引:1,自引:1,他引:0  
Abstract: In this report, we examine the requirement of cholesterol biosynthesis and its axonal transport for goldfish optic nerve regeneration. Cholesterol, labeled by intraocular injection of [3H]mevalonolactone. exhibited a delayed appearance in the optic tectum. Squalene and other minor components were labeled but not transported. Following optic nerve crush, the amount of labeled cholesterol transport was elevated, while retinal labeling was not altered relative to control fish. A requirement for cholesterol biosynthesis is inferred from the inhibition of neurite outgrowth in retinal explants caused by the cholesterol synthesis inhibitor, 20, 25-diazacholes-terol. The inhibition of growth could be overcome by addition of mevalonolactone, but not cholesterol, to the medium. Intraperitoneal administration of 200 nmol of dia-zacholesterol resulted in 92-98% inhibition of retinal cholesterol synthesis and accumulation of labeled des-mosterol and other lipids in fish retina and brain which persisted for 2 weeks. Diazacholesterol-treated fish showed no reduction in the amount of lipid-soluble radioactivity transported following intraocular injection of [3H]mevalonolactone, but there were alterations in the chromatographic pattern of the transported labeled lipids. In contrast to its effects on neurite outgrowth in vitro , diazacholesterol did not inhibit optic nerve regeneration in vivo , as measured both by arrival of labeled rapidly transported protein at the tectum and by time required for the return of visual function.  相似文献   
10.
Abstract: This study examined the effect of streptozotocin diabetes of 5 weeks duration on the profile of slow orthogradely transported radiolabelled protein in rat sciatic motoneurones. The diabetic rats showed a retardation of the tail of the slow-component profile. This selective retardation was unaffected by treatment with an aldose reductase inhibitor, although this treatment reduced the accumulation of sorbitol and prevented the depletion of myo -inositol in the sciatic nerves of the treated diabetic rats. Other groups, treated with myo -inositol, had normal or elevated sciatic nerve myo -inositol levels in the presence of accumulated sorbitol. The axonal transport profiles from both control and diabetic myo-inositol-treated groups gave normal tail velocities but an altered shape such that retardation of the tail of the profile may have been present in both. The study concludes that rats with 5 weeks streptozotocin diabetes show retardation of the velocity of the most slowly transported proteins in sciatic motoneurones, and that this defect is not linked to the polyol pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号