首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2011年   2篇
  2008年   1篇
  2000年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1983年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Abstract: For the purpose of demonstrating the action of taurine as a neuromodulator in addition to its suggested neurotransmitter function, the effects of taurine and muscimol on the depolarization-induced Ca-dependent release of [3H]γ-aminobutyric acid (pH]GABA) and l -[3H]glutamate in cerebellar slices from guinea pigs were investigated. The release of [3H]GABA was found to be greatly decreased by a GABA agonist, muscimol, and by taurine, but not by glycine. The release of l -[3H]glutamate was little affected by taurine. The release of [3H]GABA was enhanced by bicuculline and strychnine, but not by picrotoxin, and the suppressive action of muscimol on the GABA release was antagonized by bicuculline, picrotoxin, and strychnine, suggesting the possible existence of presynaptic autoreceptors for GABA in the cerebellum. The suppressive action of taurine on the release of [3H]GABA, on the other hand, was blocked only by bicuculline. These results suggest that taurine reduced the release of [3H]GABA from cerebellar slices by acting on the GABA autoreceptors or, more likely, on other types of receptors that are sensitive to bicuculline. As a possible mechanism for this modulatory action of taurine, the blockade by this amino acid of the influx of Ca2+ into cerebellar tissues was tentatively suggested.  相似文献   
2.
Abstract: We examined the regulation of neostriatal tyrosine hydroxylation during acute stress, testing the hypothesis that excitatory amino acids (EAAs) contribute to the stress-evoked increase in dopamine (DA) synthesis. Dialysis probes implanted into neostriatum permitted delivery of drugs and sampling of extracellular fluid. Rats were exposed to 30 min of intermittent tail shock during infusion of an inhibitor of aromatic amino acid decarboxylase (AAAD), NSD-1015 (100 µM), and DOPA was measured in the dialysate. Tail shock was applied beginning either 15 min after the onset of NSD-1015 treatment (the initial rate of DOPA accumulation) or 75 min after the onset of treatment (when DOPA had approached steady state). Tail shock increased the steady-state levels of extracellular DOPA in neostriatum (+40%). However, there was no change in the initial rate of DOPA accumulation unless animals also received the D2 receptor antagonist eticlopride (50 nM), in which case an increase was observed (+228%). The impact of tail shock on the steady-state level of DOPA was attenuated by the D2 agonist quinpirole (100 µM), or by 2-amino-5-phosphonovalerate (APV) (100 µM) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (100 µM), EAA antagonists acting at NMDA or d ,l -α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA) receptors, respectively. These data suggest that acute stress normally has little effect on tyrosine hydroxylation in neostriatum due to the inhibitory influence of DA in the extracellular fluid. However, when that influence is absent (e.g., during extended inhibition of DOPA decarboxylation or blockade of DA receptors), stress increases tyrosine hydroxylation via EAAs acting on NMDA and AMPA receptors. Thus, EAAs released from corticostriatal projections may stimulate DA synthesis and thereby restore dopaminergic activity under conditions in which the availability of DA for release has been compromised.  相似文献   
3.
Abstract: Synaptosomes prepared from area CA1 of the rat hippocampus were used to determine (a) whether Schaffer collateral-commissural-ipsilateral associational terminals release both aspartate and glutamate in a Ca2+-dependent manner when reuptake of released glutamate is minimal and (b) whether autoreceptor mechanisms described in CA1 or hippocampal slices could reflect direct actions of glutamate receptor ligands on the synaptic terminal. When challenged for 1 min with either 25 m M K+ or 300 µ M 4-aminopyridine, CA1 synaptosomes released both glutamate and aspartate in a Ca2+-dependent manner. The glutamate/aspartate ratio was ∼5:1 in each case. K+-evoked glutamate release was unaffected by ligands active at NMDA or ( RS )-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. Unlike glutamate release, the release of aspartate was enhanced by NMDA, and this effect was blocked by d -2-amino-5-phosphonovalerate ( d -AP5). Kainate selectively depressed and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) selectively increased the K+-evoked release of aspartate. AMPA enhanced aspartate release, like the antagonist CNQX. When applied in the presence of diazoxide, which blocks the desensitization of AMPA receptors, AMPA and kainate both depressed aspartate release. These findings support the view that Schaffer collateral-commissural-ipsilateral associational terminals release aspartate as well as glutamate and that these two release processes are regulated by different autoreceptor mechanisms.  相似文献   
4.
Abstract: Extracellular levels of glutamate (Glu) and aspartate (Asp) were measured at 5-s intervals in the striatum of chloral hydrate-anesthetized rats by using microdialysis coupled to an automated assay system based on capillary electrophoresis with laser-induced fluorescence. Application of a single 10-s train of depolarizing pulses to the prefrontal cortex caused a rapid increase in Glu and Asp concentrations (200–300% of basal value), which returned to basal level within 60 s. The stimulated rise in Glu and Asp concentrations was blocked completely by 2 µ M tetrodotoxin or depletion of extracellular Ca2+, suggesting a neuronal origin of the Glu and Asp. Infusion of the Glu transport inhibitor l - trans -pyrrolidine-2,4-dicarboxylic acid (200 µ M ) increased resting Glu and Asp levels by 300–500% without altering electrically stimulated changes in Glu and Asp concentration. Stimulated Glu and Asp concentration changes were suppressed by 91 and 73%, respectively, by the metabotropic Glu receptor agonist (1 S ,3 R )-1-aminocyclopentane- trans -1,3-dicarboxylate (200 µ M ). This effect was blocked by the metabotropic Glu receptor antagonist ( RS )-α-methylcarboxyphenylglycine (MCPG; 200 µ M ). MCPG alone produced no effect on electrically stimulated changes in Glu and Asp levels; however, in the presence of l - trans -pyrrolidine-2,4-dicarboxylic acid, MCPG produced a five- to sixfold increase in stimulated overflow. Based on these results, it is concluded that release of Glu and Asp from corticostriatal neurons can be inhibited by activation of metabotropic Glu autoreceptors, which may be an important determinant of excitatory transmission at striatal synapses.  相似文献   
5.
Impairments in axonal dopamine release are associated with neurological disorders such as schizophrenia and attention deficit hyperactivity disorder and pathophysiological conditions promoting drug abuse and obesity. The D2 dopamine autoreceptor (D2-AR) exerts tight regulatory control of axonal dopamine (DA) release through a mechanism suggested to involve K(+) channels. To evaluate the contribution of Kv1 voltage-gated potassium channels of the Shaker gene family to the regulation of axonal DA release by the D2-AR, the present study employed expression analyses, real time measurements of striatal DA overflow, K(+) current measurements and immunoprecipitation assays. Kv1.1, -1.2, -1.3, and -1.6 mRNA and protein were detected in midbrain DA neurons purified by fluorescence-activated cell sorting and in primary DA neuron cultures. In addition, Kv1.1, -1.2, and -1.6 were localized to DA axonal processes in the dorsal striatum. By means of fast scan cyclic voltammetry in striatal slice preparations, we found that the inhibition of stimulation-evoked DA overflow by a D2 agonist was attenuated by Kv1.1, -1.2, and -1.6 toxin blockers. A particular role for the Kv1.2 subunit in the process whereby axonal D2-AR inhibits DA overflow was established with the use of a selective Kv1.2 blocker and Kv1.2 knock-out mice. Moreover, we demonstrate the ability of D2-AR activation to increase Kv1.2 currents in co-transfected cells and its reliance on Gβγ subunit signaling along with the physical coupling of D2-AR and Kv1.2-containing channels in striatal tissue. These findings underline the contribution of Kv1.2 in the regulation of nigrostriatal DA release by the D2-AR and thereby offer a novel mechanism by which DA release is regulated.  相似文献   
6.
The possible existence of a dopamine D2 receptor-mediated regulation of dopamine release was investigated in the goldfish retina. Isolated retinas were preloaded with [3H]dopamine and superfused with D2 dopamine receptor agonists or antagonists to determine if there was an effect on [3H]dopamine release. The D2 receptor antagonist sulpiride increased both baseline [3H]- dopamine release and [3H]dopamine release induced by an increase in extracellular potassium concentration. The D2 receptor agonists LY-171555 and RU-24213 did not reduce baseline [3H]dopamine release but completely inhibited [3H]dopamine release induced by an increase in [K±]o. This action of the D2 agonists was blocked by sulpiride. These studies demonstrate the existence of D2 receptor, possibly autoreceptor, regulation of dopamine release in the teleost retina.  相似文献   
7.
8.
Changes in various histamine (HA) H3 receptor-mediated responses and H3 receptor binding in brain were investigated in mice receiving single or repeated administration of ciproxifan, a potent brain-penetrating and selective H3 receptor antagonist. Blockade of the H3 autoreceptor was nearly as effective in enhancing levels of tele-methylhistamine (t-MeHA), a major HA metabolite, in brain areas when ciproxifan was administered once either at 7 a.m. or 8 p.m., in spite of the large differences of basal levels at these two phases of the circadian cycle. Blockade after a single ciproxifan administration was, however, followed by a transient decrease in striatal t-MeHA levels, possibly reflecting rapid development of autoreceptor hypersensitivity. Following a 5-day administration of ciproxifan and a 2-day drug-free period, basal t-MeHA levels were significantly decreased (approximately -20%) in three brain areas, and the ED50 values of the drug to enhance t-MeHA levels were increased by 5-15 times without significant change in maximal response, indicating that H3 autoreceptor hypersensitivity had developed. However, in synaptosomes from the cerebral cortex of these animals, the H3 receptor-mediated inhibition of K+-induced [3H]HA release was not significantly modified. Subchronic administration of ciproxifan for 10 days also resulted in an increased binding of [125I]iodoproxyfan to the H3 receptor of striatal and hypothalamic membranes by 40-54%. Hypersensitivity at H3 somatodendritic autoreceptors and at heteroreceptors attributable to an increased number of HA binding sites could account for the various changes observed in this study.  相似文献   
9.
Abstract: The purpose of this study was to determine the effects of localized delivery of the D2 antagonist (−)-sulpiride (via microdialysis) on spontaneous and evoked dopamine release in the neostriatum of urethane-anesthetized rats 5, 10, 15, 21, and 70 days of age. Sulpiride increased spontaneous dopamine release approximately threefold relative to baseline measures, and this effect decreased with maturation. The relationship between sulpiride- and potassium-evoked release was complex; sulpiride increased evoked dopamine outflow at 5, 10, and 15 days of age. At 21 and 70 days of age, however, the effects of sulpiride were inversely related to the degree of stimulation with potassium. Furthermore, the D2 agonist quinpirole (100 µ M ) reversed the effects of sulpiride (10 µ M ), suggesting receptor mediation. These experiments demonstrate that the maturational decline in the efficacy and potency of D2 antagonism appears to be related to the degree of stimulation at the nerve terminal.  相似文献   
10.
The peptide neurotensin (NT) is known to exert a potent excitatory effect on the dopaminergic system by inhibiting D2 dopamine (DA) receptor (D2R) function. This regulation is dependent on activation of PKC, a well known effector of the type 1 NT receptor (NTR1). Because PKC phosphorylation of the D2R has recently been shown to induce its internalization, we hypothesized that NT acts to reduce D2R function through heterologous desensitization of the D2R. In the present study, we first used HEK-293 cells to demonstrate that NT induces PKC-dependent D2R internalization. Furthermore, internalization displayed faster kinetics in cells expressing the D2R short isoform, known to act as an autoreceptor in DA neurons, than in cells expressing the long isoform, known to act as a postsynaptic D2R. In patch clamp experiments on cultured DA neurons, overexpression of a mutant D2S lacking three key PKC phosphorylation sites abrogated the ability of NT to reduce D2R-mediated cell firing inhibition. Short interfering RNA-mediated inhibition of β-arrestin1 and dynamin2, proteins important for receptor desensitization, reduced agonist-induced desensitization of D2R function, but only the inhibition of β-arrestin1 reduced the effect of NT on D2R function. Taken together, our data suggest that NT acutely regulates D2 autoreceptor function and DA neuron excitability through PKC-mediated phosphorylation of the D2R, leading to heterologous receptor desensitization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号