首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
  2023年   1篇
  2020年   6篇
  2019年   5篇
  2018年   7篇
  2015年   2篇
  2014年   5篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  1994年   1篇
  1985年   1篇
  1981年   1篇
  1972年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Summary Autophagosome formation in rat and gerbil pinealocytes is described. It starts with the setting up of a tubular acid phosphatase-rich cisterna which gradually wraps around cytoplasmic areas to be catabolized. In light of obtained findings, it seems that the autophagosome formation in pinealocytes is a type of lysosome wrapping mechanism.  相似文献   
2.
The ink sac epithelium of the cuttlefish Sepia officinalis was investigated by electron microscopy. Melanogenesis in a simplified view seems to follow the general scheme of melanin formation in vertebrates. First, a membrane-bound protein matrix is formed, which is called an early stage melanosome. The early stage melanosomes are more or less irregular in shape with a size up to 1.5 μm and contain membranous, granular, or vesicular material. They seem to originate from Golgi bodies and/or endoplasmic reticulum. Membranes that frequently are present in the early stage melanosomes may originate from fusion of vesicles or from incorporation of Golgi membranes into early stage melanosomes. Free cytoplasmic material or mitochondria probably are also incorporated into the early stage melanosomes or melanosomes. Therefore, the origin of the early stage melanosomes seems to be similar to that of autophagosomes. The early stage melanosomes mature to melanosomes in which several dozen melanin granules are formed. These melanosomes, at last, release the melanin granules together with other cellular material, including early stage melanosomes, into the lumen of the ink gland. This finding confirms the earlier postulated holocrine character of the release. Active tyrosinase was localized in the lumen of the ink sac as already shown by biochemical methods. There was also additional evidence that most of the material of broken down cells inside the lumen of the ink sac seems to be converted into melanin granules.  相似文献   
3.
Most cellular processes descend into failure during aging. While a large collection of longevity pathways has been identified in the past decades, the mechanism for age-related decline of cellular homeostasis and organelle function remains largely unsolved. It is known that many organelles undergo structural and functional changes during normal aging, which significantly contributes to the decline of tissue function at old ages. Since recent studies have revealed an emerging role of organelles as regulatory hubs in maintaining cellular homeostasis, understanding of organelle aging will provide important insights into the cellular basis of organismal aging. Here we review current progress on the characterization of age-dependent structural and functional alterations in the more well-studied organelles, as well as the known mechanisms governing organelle aging in model organisms, with a special focus on the fruit fly Drosophila melanogaster.  相似文献   
4.
Autophagy, a system for the bulk degradation of intracellular components, is essential for homeostasis and the healthy physiology and development of cells and tissues. Its deregulation is associated with human disease. Thus, methods to modulate autophagic activity are critical for analysis of its role in mammalian cells and tissues. Here we report a method to inhibit autophagy using a mutant variant of the protein ATG7, a ubiquitin E1-like enzyme essential for autophagosome formation. During autophagy, ATG7 activates the conjugation of LC3 (ATG8) with phosphatidylethanolamine (PE) and ATG12 with ATG5. Human ATG7 interactions with LC3 or ATG12 require a thioester bond involving the ATG7 cysteine residue at position 572. We generated TetOff cells expressing mutant ATG7 protein carrying a serine substitution of this critical cysteine residue (ATG7C572S). Because ATG7C572S forms stable intermediate complexes with LC3 or ATG12, its expression resulted in a strong blockage of the ATG-conjugation system and suppression of autophagosome formation. Consequently, ATG7C572S mutant protein can be used as an inhibitor of autophagy.  相似文献   
5.
郭旭光  夏勇  马越云  郝晓柯 《生物磁学》2011,(21):4019-4023
目的:构建Atg5.真核表达载体并瞬时转染肺上皮细胞细胞株,探讨自噬在结核分枝杆菌感染上皮细胞中保护作用的分子机制。方法:设计针对Atg5的RNAi序列,化学合成后经过变性,退火连接到pSilencerTM3.1-H1hygro真核表达载体,经测序验证其正确性。脂质体法瞬时转染真核细胞A549,免疫印迹法检测瞬时转染的效果。用结核分枝杆菌分别感染正常和自噬表达低下的A549细胞.通过检测LDH来观察细胞的坏死情况。结果:成功的构建了pSilencerTM3.1-H1hygro真核表达载体并建瞬时转染了A549细胞株,成功抑制了细胞的自噬功能。Atg5-细胞对结核杆菌的抵抗能力下降。结论:在自噬表达低下的细胞中,细胞对结核分枝杆菌的抵抗能力有明显下降。在结核分枝杆菌感染上皮细胞的过程中,自噬是一种保护机制。  相似文献   
6.
True to their inherent aggressive behavior, melanomas keep impressing the melanoma community with their ability to bypass tumor suppressor mechanisms. Name a pathway with the potential to control cell survival and melanoma cells will likely have it potentiated by multiple genetic or epigenetic alterations. In the context of progression and chemoresistance, large efforts have been dedicated to the identification of protective mechanisms associated with or linked to apoptotic death programs. These studies have guided the design of targeted anticancer strategies. Still, the promise for pro-apoptotic inducers as lead compounds for drug development has yet to come to fruition. It was then a question of time to identify alternative modulators of cell viability. An ideal candidate that is raising great expectations in the oncology field is autophagy, a catabolic process with multiple roles in cell homeostasis. Here we review the incipient literature on autophagy markers in melanocytic lesions. Intriguingly, histopathological studies are unveiling an intrinsic inter- and intratumor variability in the expression of autophagy modulators. Nonetheless, functional studies support a key role of autopaphagy programs in the response to a variety of stress factors. These include adaptive responses to nutrient deprivation, hypoxia and many anticancer agents, among other stimuli. Strategies are being also developed to mobilize the endocytic machinery and shift autolysosomes into death effectors. The opportunities that lie ahead in this field are exciting. Various authophagy mediators are potentially druggable. Moreover, animal models and the development of sophisticated screening methods offer a platform for multilevel academic-industrial collaborations. These efforts are expected to open avenues of research and, hopefully, lead to a more rational approach to melanoma treatment.  相似文献   
7.
Autophagosomes and their precursors are best defined by electron microscopy but may also be traced in living cells based on the distribution of specific autophagy molecules. LC3, the most commonly examined autophagy marker in mammalian cells, labels structures that are frequently manifested as dots or rings using light microscopy; however, the nature of these structures is not entirely clear. We reported here a novel approach to examine the LC3-positive compartment in cell-free lysates, which revealed that they were actually tubulovesicular structures with considerable heterogeneity. Using affinity purification, we isolated these membranes for electron microscopy, which indicated that they possessed ultrastructural features consistent with autophagosomal membranes at various maturation stages. Further biochemical and proteomics analyses demonstrated the presence of multiple autophagy-related and other functional molecules. The different distribution patterns of Atg5, Atg16, Atg9, and p62/SQSTM1 on the LC3-positive compartment provided new clues on how these molecules might be involved in the dynamics of the autophagosomal membranes. Finally, several morphologically unique groups of LC3-positive membranes were categorized. Their topological configurations suggested that double-membrane vesicles could be derived from single membrane compartments via different means, including tubule-to-vesicle conversion, whose presence was supported by live cell imaging. These findings thus provide new information on the dynamics of the autophagosomal compartment.  相似文献   
8.
Autophagy is a regulated process for the degradation of cellular components that has been well conserved in eukaryotic cells. The discovery of autophagy-regulating proteins in yeast has been important in understanding this process. Although many parallels exist between fungi and mammals in the regulation and execution of autophagy, there are some important differences. The preautophagosomal structure found in yeast has not been identified in mammals, and it seems that there may be multiple origins for autophagosomes, including endoplasmic reticulum, plasma membrane and mitochondrial outer membrane. The maturation of the phagophore is largely dependent on 5’-AMP activated protein kinase and other factors that lead to the dephosphorylation of mammalian target of rapamycin. Once the process is initiated, the mammalian phagophore elongates and matures into an autophagosome by processes that are similar to those in yeast. Cargo selection is dependent on the ubiquitin conjugation of protein aggregates and organelles and recognition of these conjugates by autophagosomal receptors. Lysosomal degradation of cargo produces metabolites that can be recycled during stress. Autophagy is an impor-tant cellular safeguard during starvation in all eukaryotes; however, it may have more complicated, tissue specific roles in mammals. With certain exceptions, autophagy seems to be cytoprotective, and defects in the process have been associated with human disease.  相似文献   
9.
Daniel J. Klionsky 《Autophagy》2018,14(10):1661-1664
In a recent issue of this journal I attempted to explain the purpose of macroautophagy/autophagy to a non-specialist audience through the use of cartoons. In the present article, I am continuing this approach by considering the topic of autophagy regulation—why does the cell need to modulate the autophagic response, and what are the basic morphological mechanisms that can be used to attain different levels of autophagy activity?  相似文献   
10.
Autophagy is a tightly regulated lysosomal degradation pathway for maintaining cellular homeostasis and responding to stresses. Beclin 1 and its interacting proteins, including the class III phosphatidylinositol-3 kinase Vps34, play crucial roles in autophagy regulation in mammals. We identified nuclear receptor binding factor 2 (Nrbf2) as a Beclin 1-interacting protein from Becn1−/−;Becn1-EGFP/+ mouse liver and brain. We also found that Nrbf2-Beclin 1 interaction required the N terminus of Nrbf2. We next used the human retinal pigment epithelial cell line RPE-1 as a model system and showed that transiently knocking down Nrbf2 by siRNA increased autophagic flux under both nutrient-rich and starvation conditions. To investigate the mechanism by which Nrbf2 regulates autophagy, we demonstrated that Nrbf2 interacted and colocalized with Atg14L, suggesting that Nrbf2 is a component of the Atg14L-containing Beclin 1-Vps34 complex. Moreover, ectopically expressed Nrbf2 formed cytosolic puncta that were positive for isolation membrane markers. These results suggest that Nrbf2 is involved in autophagosome biogenesis. Furthermore, we showed that Nrbf2 deficiency led to increased intracellular phosphatidylinositol-3 phosphate levels and diminished Atg14L-Vps34/Vps15 interactions, suggesting that Nrbf2-mediated Atg14L-Vps34/Vps15 interactions likely inhibit Vps34 activity. Therefore, we propose that Nrbf2 may interact with the Atg14L-containing Beclin 1-Vps34 protein complex to modulate protein-protein interactions within the complex, leading to suppression of Vps34 activity, autophagosome biogenesis, and autophagic flux. This work reveals a novel aspect of the intricate mechanism for the Beclin 1-Vps34 protein-protein interaction network to achieve precise control of autophagy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号