首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   2篇
  国内免费   2篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   6篇
  2018年   8篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2002年   4篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1981年   3篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   3篇
排序方式: 共有80条查询结果,搜索用时 32 毫秒
1.
2.
In stratified lakes, dominance of the phytoplankton by cyanobacteria is largely the result of their buoyancy and depth regulation. Bloom-forming cyanobacteria regulate the gas vesicle and storage polymer contents of their cells in response to interactive environmental factors, especially light and nutrients. While research on the roles of nitrogen and phosphorus in cyanobacterial buoyancy regulation has reached a consensus, evaluations of the roles of carbon have remained open to dispute. We investigated the various effects of changes in carbon availability on cyanobacterial buoyancy with continuous cultures of Microcystis aeruginosa Kuetz. emend. Elenkin (1924), a notorious bloom-former. Although CO2 limitation of photosynthesis can promote buoyancy in the short term by preventing the collapse of turgor-sensitive gas vesicles and/or by limiting polysaccharide accumulation, we found that sustained carbon limitation restricts buoyancy regulation by limiting gas vesicle as well as polysaccharide synthesis. These results provide an explanation for the positive effects of bicarbonate enrichment on cyanobacterial nitrogen uptake and bloom formation in lake experiments and may help to explain the pattern of cyanobacterial dominance in phosphorus-enriched, low-carbon lakes.  相似文献   
3.
Therapy resistance can be attributed to acquisition of anti-apoptotic mechanisms by the cancer cells. Therefore, developing approaches that trigger non-apoptotic cell death in cancer cells to compensate for apoptosis resistance will help to treat cancer effectively. Triple-negative breast cancers (TNBC) are among the most aggressive and therapy resistant to breast tumors. Here we report that manumycin A (Man A), an inhibitor of farnesyl protein transferase, reduces cancer cell viability through induction of non-apoptotic, non-autophagic cytoplasmic vacuolation death in TNBC cells. Man A persistently induced cytoplasmic vacuolation and cell death through the expression of microtubule-associated protein 1 light chain 3 (LC3) and p62 proteins along with endoplasmic reticulum (ER) stress markers, Bip and CHOP, and accumulation of ubiquitinated proteins. As inhibitors of apoptosis and autophagy failed to block cytoplasmic vacuolation and its associated protein expression or cell death, it appears that these processes are not involved in the death induced by Man A. Ability of thiol antioxidant, NAC in blocking Man A-induced vacuolation, death and its related protein expression suggests that sulfhydryl homeostasis may be the target of Man A. Surprisingly, normal human mammary epithelial cells failed to undergo cytoplasmic vacuolation and cell death, and grew normally in presence of Man A. In conjunction with its in vitro effects, Man A also reduced tumor burden in vivo in xenograft models that showed extensive cytoplasmic vacuoles and condensed nuclei with remarkable increase in the vacuolation-associated protein expression together with increase of p21, p27, PTEN and decrease of pAkt. Interestingly, Man A-mediated upregulation of p21, p27 and PTEN and downregulation of pAkt and tumor growth suppression were also mimicked by LC3 knockdown in MDA-MB-231 cells. Overall, these results suggest novel therapeutic actions by Man A through the induction of non-apoptotic and non-autophagic cytoplasmic vacuolation death by probably affecting ER stress, LC3 and p62 pathways in TNBC but not in normal mammary epithelial cells.  相似文献   
4.
Platycodin D (PD) is a major active component of the roots of Platycodon grandiflorum (Jacq.) A.DC. and possesses multiple biological and pharmacological properties, including anti-cancer activity. The aim of this study was to characterize PD-induced cytoplasmic vacuolation in human cancer cells and investigate the underlying mechanisms. PD-induced cancer cell death was associated with cytoplasmic pinocytic and autophagic vacuolation. Cellular energy levels were decreased by this compound, leading to the activation of AMP-activated protein kinase (AMPK). Additionally, compound C, an inhibitor of AMPK, completely prevented PD-induced vacuolation. These results suggest that PD induces cancer cell death, associated with excessive vacuolation through AMPK activation when cellular energy levels are low. Therefore, our findings provide a mechanistic rationale for a novel combinatorial approach using PD to treat cancer.  相似文献   
5.
The notochord is essential for normal vertebrate development, serving as both a structural support for the embryo and a signaling source for the patterning of adjacent tissues. Previous studies on the notochord have mostly focused on its formation and function in early organogenesis but gene regulation in the differentiation of notochord cells itself remains poorly defined. In the course of screening for genes expressed in developing notochord, we have isolated Xenopus homolog of Btg2 (XBtg2). The mammalian Btg2 genes, Btg2/PC3/TIS21, have been reported to have multiple functions in the regulation of cell proliferation and differentiation but their roles in early development are still unclear. Here we characterized XBtg2 in early Xenopus laevis embryogenesis with focus on notochord development. Translational inhibition of XBtg2 resulted in a shortened and bent axis phenotype and the abnormal structures in the notochord tissue, which did not undergo vacuolation. The XBtg2-depleted notochord cells expressed early notochord markers such as chordin and Xnot at the early tailbud stage, but failed to express differentiation markers of notochord such as Tor70 and 5-D-4 antigens in the later stages. These results suggest that XBtg2 is required for the differentiation of notochord cells such as the process of vacuolar formation after determination of notochord cell fate.  相似文献   
6.
Valproic acid (VPA) inhibited the growth of yeast in a dose-dependent manner with complete inhibition attained at 100 mM. When cells were exposed to 25 mM VPA, the wild-type died showing apoptotic markers, while yca1Delta deleted of YCA1 encoding yeast caspase 1 survived. On the other hand, when cells were exposed to 50 mM VPA, both the wild-type and yca1Delta died showing morphological features similar to those of the autophagic death of cdc28 which was also independent of YCA1. Thus, these results suggested that yeast cells die via YCA1-dependent apoptosis when their proliferative activity is mildly impaired.  相似文献   
7.
While the apoptotic and necrotic cell death pathways have been well studied, there lacks a comprehensive understanding of the molecular events involving autophagic cell death. We examined the potential roles of the apoptosis-linked caspase-3 and the necrosis/apoptosis-linked calpain-1 after autophagy induction under prolonged amino acid (AA) starvation conditions in PC-12 cells. Autophagy induction was observed as early as three hours following amino acid withdrawal. Cell death, measured by lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays occurred within 24 h following starvation and was accompanied by an upregulation in caspase-3 activity but not calpain-1. The cell death that occurred following AA starvation was significantly alleviated by treatment with the autophagy inhibitor 3-methyl adenine but not with the broad spectrum caspase inhibitors. Thus, this study demonstrates that 3-methyladenine-sensitive autophagic cell death due to AA starvation in PC-12 cells is mechanistically and biochemically similar to, yet distinct from, classic caspase dependent apoptosis. Shankar Sadasivan and Anu Waghray have contributed equally to this work.  相似文献   
8.
TrkA receptor activation is a pivotal process for neuronal cell differentiation and survival. However, its overactivation or removal of its ligand NGF tends to cause the cell death. Recently, we demonstrated that TrkA overexpression induces cell death via apoptosis. In this study we also show that the TrkA-mediated cell death is associated with autophagy. TrkA-induced cells revealed an increase of GFP-LC3 punctate formation, development of acidic vesicular organelles (AVO) and formation of autophagosomes, which were eventually blocked by the addition of some autophagy inhibitors such as 3-methyladenine, ammonium chloride or wortmannin. In addition, although expression of autophagy-related proteins such as LC3-II or Beclin-1 was subtly altered during the TrkA-mediated cell death, depletion of ATG5 or Beclin-1 substantially decreased cell death in TrkA-expressing cells. In particular, reactive oxygen species (ROS) were dramatically accumulated in TrkA-induced cells, and the high accumulation of ROS was released by treatment of autophagy inhibitors. Furthermore, addition of an antioxidant N-acetylcysteine promoted the survival of TrkA-expressing cells and suppressed AVO production in cells. We also showed that this ROS accumulation was closely associated with reduction of catalase expression. Taken together, TrkA overexpression causes ROS accumulation via reduced catalase expression, ultimately leading to autophagic cell death.  相似文献   
9.
Metabolic diseases affect various organs including the brain. Accumulation or depletion of substrates frequently leads to brain injury and dysfunction. Deficiency of aminopeptidase P1, a cytosolic proline‐specific peptidase encoded by the Xpnpep1 gene, causes an inborn error of metabolism (IEM) characterized by peptiduria in humans. We previously reported that knockout of aminopeptidase P1 in mice causes neurodevelopmental disorders and peptiduria. However, little is known about the pathophysiological role of aminopeptidase P1 in the brain. Here, we show that loss of aminopeptidase P1 causes behavioral and neurological deficits in mice. Mice deficient in aminopeptidase P1 (Xpnpep1?/?) display abnormally enhanced locomotor activities in both the home cage and open‐field box. The aminopeptidase P1 deficiency in mice also resulted in severe impairments in novel‐object recognition, the Morris water maze task, and contextual, but not cued, fear memory. These behavioral dysfunctions were accompanied by epileptiform electroencephalogram activity and neurodegeneration in the hippocampus. However, mice with a heterozygous mutation for aminopeptidase P1 (Xpnpep1+/?) exhibited normal behaviors and brain structure. These results suggest that loss of aminopeptidase P1 leads to behavioral, cognitive and neurological deficits. This study may provide insight into new pathogenic mechanisms for brain dysfunction related to IEMs.  相似文献   
10.
Uncoupled endothelial nitric oxide synthase (eNOS) produces O2? instead of nitric oxide (NO). Earlier, we reported rapamycin, an autophagy inducer and inhibitor of cellular proliferation, attenuated low shear stress (SS) induced O2? production. Nevertheless, it is unclear whether autophagy plays a critical role in the regulation of eNOS uncoupling. Therefore, this study aimed to investigate the modulation of autophagy on eNOS uncoupling induced by low SS exposure. We found that low SS induced endothelial O2? burst, which was accompanied by reduced NO release. Furthermore, inhibition of eNOS by L-NAME conspicuously attenuated low SS-induced O2? releasing, indicating eNOS uncoupling. Autophagy markers such as LC3 II/I ratio, amount of Beclin1, as well as ULK1/Atg1 were increased during low SS exposure, whereas autophagic degradation of p62/SQSTM1 was markedly reduced, implying impaired autophagic flux. Interestingly, low SS-induced NO reduction could be reversed by rapamycin, WYE-354 or ATG5 overexpression vector via restoration of autophagic flux, but not by N-acetylcysteine or apocynin. eNOS uncoupling might be ascribed to autophagic flux blockade because phosphorylation of eNOS Thr495 by low SS or PMA stimulation was also regulated by autophagy. In contrast, eNOS acetylation was not found to be regulated by low SS and autophagy. Notably, although low SS had no influence on eNOS Ser1177 phosphorylation, whereas boosted eNOS Ser1177 phosphorylation by rapamycin were in favor of the eNOS recoupling through restoration of autophagic flux. Taken together, we reported a novel mechanism for regulation of eNOS uncoupling by low SS via autophagy-mediated eNOS phosphorylation, which is implicated in geometrical nature of atherogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号