首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2004年   1篇
  1999年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Seedlings of rice (Oryza sativa L. cv. Koshihikari and cv. Tan-ginbozu) were cultivated on board the Space Shuttle STS-95 mission and changes in the morphology and the cell wall properties of coleoptiles were analyzed. In space, rice coleoptiles showed a spontaneous (automorphic) curvature toward the caryopsis in the elongating region. The angle of automorphic curvature was larger in Koshihikari than in a gibberellin-deficient dwarf cultivar, Tan-ginbozu, and the angle gradually decreased during the growth of coleoptiles in both cultivars. The more quickly expanding convex side of the bending region of the rice coleoptiles showed a greater extensibility of the cell wall than the opposite side. There was a significant correlation between the angle of curvature and the difference in the cell wall extensibility between the convex and the concave sides. Both the levels of the cell wall polysaccharides per unit length of coleoptile and the ratio of high-molecular-mass polysaccharides in the hemicellulose fraction were lower in the convex side than the concave one. Also, the activity of (13),(14)--glucanases in the cell wall was higher in the convex side than the concave one. These results suggest that the uneven modifications of cell wall metabolism bring about the difference in the levels and the molecular size of the cell wall polysaccharides, thereby causing the difference in capacity of the cell wall to expand between the dorsal and the ventral sides, leading to the automorphic curvature of rice coleoptiles in space. The data also suggest the involvement of gibberellins in inducing the automorphic curvature under microgravity conditions.  相似文献   
2.
Oryza sativa L.) and Arabidopsis (A. thaliana L.) were cultivated for 68.5 hr in the RICE experiment on board during Space Shuttle STS-95 mission, and changes in their growth and morphology were analyzed. Microgravity in space stimulated elongation growth of both rice coleoptiles and Arabidopsis hypocotyls by making their cell walls extensible. In space, rice coleoptiles showed an inclination toward the caryopsis in the basal region and also a spontaneous curvature in the same direction in the elongating region. These inclinations and curvatures were more prominent in the Koshihikari cultivar compared to a dwarf cultivar, Tan-ginbozu. Rice roots elongated in various directions including into the air on orbit, but two thirds of the roots formed a constant angle with the axis of the caryopsis. In space, Arabidopsis hypocotyls also elongated in a variety of directions and about 10% of the hypocotyls grew into the agar medium. No clear curvatures were observed in the elongating region of Arabidopsis hypocotyls. Such a morphology of both types of seedlings was fundamentally similar to that observed on a 3-D clinostat. Thus, it was confirmed by the RICE experiment that rice and Arabidopsis seedlings perform an automorphogenesis under not only simulated but also true microgravity conditions. Received 13 September 1999/ Accepted in revised form 12 October 1999  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号