首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   568篇
  免费   23篇
  国内免费   9篇
  2024年   1篇
  2023年   5篇
  2022年   11篇
  2021年   15篇
  2020年   20篇
  2019年   31篇
  2018年   28篇
  2017年   29篇
  2016年   25篇
  2015年   53篇
  2014年   47篇
  2013年   95篇
  2012年   38篇
  2011年   29篇
  2010年   21篇
  2009年   23篇
  2008年   17篇
  2007年   16篇
  2006年   10篇
  2005年   11篇
  2004年   8篇
  2003年   8篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1988年   2篇
  1986年   1篇
  1984年   10篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
排序方式: 共有600条查询结果,搜索用时 31 毫秒
1.
Chinese hamster V79 cells were mutagenized with ethyl methanesulfonate at various concentrations. Clones resistant to 8-azaguanine (20 and 80 micrograms/ml) or 6-thioguanine (4 micrograms/ml) were selected at different times after the treatments. The total yield of induced mutations was only slightly affected by the kind and concentration of purine analog used in the selection. However, full phenotypic expression of the mutants selected with 8-azaguanine was achieved earlier than that of mutants resistant to 6-thioguanine. This result seems to be best explained by the reported lower affinity of 8-azaguanine for the wild-type HGPRT enzyme, thus providing evidence that, in this gene-mutation assay, the phenotypic expression time has a physiological component.  相似文献   
2.
The radiosensitivity of spermatogonial stem cells of C3H/HeH × 101/H F1 hybrid mice was determined by counting undifferentiated spermatogonia at 10 days after X-irradiation. During the spermatogenic cycle, differences in radiosensitivity were found, which were correlated with the proliferative activity of the spermatogonial stem cells. In stage VIIIirr, during quiescence, the spermatogonial stem cells were most radiosensitive with a D0 of 1.4 Gy. In stages XIirr−Virr, when the cells were proliferatively active, the D0 was about 2.6 Gy. Based on the D0 values for sensitive and resistant spermatogonia and on the D0 for the total population, a ratio of 45:55% of sensitive to resistant spermatogonial stem cells was estimated for cell killing.

When the present data were compared with data on translocation induction obtained in mice of the same genotype, a close fit was obtained when the translocation yield (Y; in % abnormal cells) after a radiation dose D was described by Y = eτD, with τ = 1 for the sensitive and τ = 0.1 for the resistant spermatogonial stem cells, with a maximal eτD of 100.  相似文献   

3.
The requirements for in vitro mitochondrial protein synthesis have been studied using isolated mitochondria from cultured adrenal Y-1 tumor cells from mice. By reducing the reaction volume to 50 microliter we were able to assay in replicate the requirements for various reaction components using trichloroacetic acid (TCA)-precipitable counts for a quantitative evaluation with time of incubation. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis followed by autoradiography was also used for a qualitative and quantitative evaluation of the translation products. With the optimized system, 1 to 3% of added [35S]methionine was incorporated. The products of mitochondrial protein synthesis range from 70,000 to 5000 molecular weight. Major autoradiographic bands were observed at 38,000, 31,000, 23,000, 20,000, and 5600 molecular weight as separated on 10 to 20% gradient SDS-polyacrylamide gels; however, 20 to 30 protein products of various molecular weights were discernible. Mitochondrial concentrations of 0.8 to 1.4 mg/ml of incubation gave the better incorporation of [35S]methionine per milligram of protein. Total [35S]methionine incorporated into mitochondrial protein was greatest at 25 degrees C after 90 min. Chloramphenicol at 10 micrograms/ml inhibited mitochondrial protein synthesis by more than 50% and at 100 micrograms/ml inhibited incorporation by more than 95%. Cycloheximide had no effect on incorporation at less than 1.0 mg/ml. Magnesium and ATP in a molar ratio of one to one at 5 mM gave optimal incorporation. Other energy generating systems using oxidative phosphorylation to supply ATP for protein synthesis were not as effective as ATP and 5 mM phosphoenol pyruvate, 20 micrograms/ml pyruvate kinase and 5 mM a-ketoglutarate. In contrast to in vitro yeast mitochondrial protein synthesis, no enhancement of in vitro adrenal cell mitochondrial protein synthesis was found with GTP or its analogs. The buffers N,N-bis(2-hydroxyethyl)glycine, N-(tris(hydroxymethyl)methyl)glycine, and N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid were superior to Tris-HCl for mitochondrial protein synthesis. Optimal pH for [35S]methionine incorporation into mitochondrial proteins was pH 7.0 to 7.6. Potassium at 50 to 90 mM gave the best incorporation of [35S]methionine, and the higher molecular weight products of translation were enhanced at these concentrations. Sodium at 10 to 40 mM had no effect; however, 100 mM sodium inhibited label incorporation by 30%. Calcium at 100 microM inhibited mitochondrial protein synthesis by approximately 50%, and at 1.0 mM little if any incorporation occurred.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
4.
Mammalian erythropoiesis includes a step in which the nucleus is extruded through the cell membrane. We have investigated the relationship between concanavalinA (conA) plasma membrane receptors, which are known to leave the incipient reticulocyte during enucleation, and regions of the plasma membrane which bind merocyanine 540, a differentiation-specific marker of hematopoietic cells. The distribution of these two fluorescent probes was examined on living cells from the spleens of neonatal mice and on erythroleukemia cells induced to enucleate in culture. In both cases, the region of the membrane extruded with the nucleus preferentially binds conA and merocyanine 540, whereas the plasma membrane which is left behind retains the capacity to bind another lectin, wheat germ agglutinin (WGA). The implications of these findings are discussed with respect to the mechanism by which markers are eliminated from the erythrocyte cell surface.  相似文献   
5.
Cholecystokinin (CCK) and enkephalins appear to be colocalized in several brain structures, and a physiological interaction between these peptides has been suggested by a large number of pharmacological studies. In this work we have shown, by in vivo binding experiments, that the endogenous enkephalins, protected from degrading enzymes by mixed inhibitors such as kelatorphan and N-[(R,S)-2-benzyl-3-[(S)-2-amino-4-methylthiobutyldithio]-1-oxo pro pyl]- L-phenylalanine benzyl ester (RB 101), a systemically active prodrug, modulate CCK release in mouse brain, leading to an overall increase in the extracellular levels of CCK. This was quantified by measuring the effects of both inhibitors on the in vivo binding of [3H]propionyl-Tyr(SO3H)-gNle-mGly-Trp-(N-Me)Nle-Asp-Phe-NH2 ([3H]pBC 264), a selective and highly potent CCK-B agonist. Thus, intracerebroventricular injection of kelatorphan produced a dose-dependent inhibition of the in vivo binding of [3H]pBC 264 with a maximal effect (40%) at 50 nmol. A similar response was observed after intravenous injection of RB 101 (40 mg/kg). The specific binding of [3H]pBC 264 was also inhibited (25%) by intravenous injection of the selective delta-opioid agonist H-Tyr-D-Cys(StBu)-Gly-Phe-Leu-Thr(OtBu)-OH (BUBUC; 2 mg/kg) but not by the mu-agonist H-Tyr-D-Ala-Gly-(N-Me)Phe-Gly-ol (5 mg/kg), suggesting a preferential involvement of delta-opioid receptors in the modulation of CCK release. This was confirmed by using the selective delta-opioid antagonist naltrindole, which prevented the inhibitory effects of BUBUC and of enkephalin-degrading enzyme inhibitors on [3H]pBC 264 binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
7.
Atg3‐catalyzed transferring of Atg8 to phosphatidylethanolamine (PE) in the phagophore membrane is essential for autophagy. Previous studies have demonstrated that this process requires Atg3 to interact with the phagophore membrane via its N‐terminal amphipathic helix. In this study, by using combined biochemical and biophysical approaches, our data showed that in addition to binding to the membranes, Atg3 attenuates lipid diffusion and enriches lipid molecules with smaller headgroup. Our data suggest that Atg3 promotes Atg8 lipidation via altering lipid diffusion and rearrangement.  相似文献   
8.
Human aspartate/asparagine-β-hydroxylase (AspH) is a 2-oxoglutarate (2OG) dependent oxygenase that catalyses the hydroxylation of Asp/Asn-residues of epidermal growth factor-like domains (EGFDs). AspH is reported to be upregulated on the cell surface of invasive cancer cells in a manner distinguishing healthy from cancer cells. We report studies on the effect of small-molecule active pharmaceutical ingredients (APIs) of human cancer therapeutics on the catalytic activity of AspH using a high-throughput mass spectrometry (MS)-based inhibition assay. Human B-cell lymphoma-2 (Bcl-2)-protein inhibitors, including the (R)-enantiomer of the natural product gossypol, were observed to efficiently inhibit AspH, as does the antitumor antibiotic bleomycin A2. The results may help in the design of AspH inhibitors with the potential of increased selectivity compared to the previously identified Fe(II)-chelating or 2OG-competitive inhibitors. With regard to the clinical use of bleomycin A2 and of the Bcl-2 inhibitor venetoclax, the results suggest that possible side-effects mediated through the inhibition of AspH and other 2OG oxygenases should be considered.  相似文献   
9.
10.
Atg12 is conjugated to Atg5 through enzymatic reactions similar to ubiquitination. The Atg12–Atg5 conjugate functions as an E3‐like enzyme to promote lipidation of Atg8, whereas lipidated Atg8 has essential roles in both autophagosome formation and selective cargo recognition during autophagy. However, the molecular role of Atg12 modification in these processes has remained elusive. Here, we report the crystal structure of the Atg12–Atg5 conjugate. In addition to the isopeptide linkage, Atg12 forms hydrophobic and hydrophilic interactions with Atg5, thereby fixing its position on Atg5. Structural comparison with unmodified Atg5 and mutational analyses showed that Atg12 modification neither induces a conformational change in Atg5 nor creates a functionally important architecture. Rather, Atg12 functions as a binding module for Atg3, the E2 enzyme for Atg8, thus endowing Atg5 with the ability to interact with Atg3 to facilitate Atg8 lipidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号