首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   3篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2000年   6篇
  1999年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
1.
Two hypotheses exist to explain ontogenetic eye reduction in Astyanax cave fish: first, after lens induction by the primordial eye cup, the lens plays the role of a central regulator of eye and retina regression or, second, the retina itself is an independent unit of eye development. A comparative study of five blind cave fish populations and their surface sister form was performed to investigate the differences of ontogenetic eye regression between the cave populations during different stages of development. The study revealed that, in addition to the initial formation of smaller primordia, eye regression is also caused during later ontogeny by different relative growth and specific histological characteristics. Whereas the cave fish lens never properly differentiates, the regressive process of the retina is transitorily interrupted by ongoing differentiation. In the newly-discovered Molino cave population, even visual cells with well-organized outer segments develop, which are secondarily reduced at a later ontogenetic stage. This result shows that the retina and lens are independent developmental units within the eye ball. Presumably, the genetic systems responsible for both show independent inheritance, which is also corroborated by hybrids of F 2-crosses between the cave and surface fish, in which lens and retina development do not correlate. During ontogeny, the eye size differs between the cave populations. In Pachón cave fish, the relatively large eye size correlates with an ancient introgression from a surface population, which may have delayed eye regression.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 287–296.  相似文献   
2.
3.
The phenotype of a mother and the environment that she provides might differentially affect the phenotypes of her sons and daughters, leading to change in sexual size dimorphism. Whereas these maternal effects should evolve to accommodate the adaptations of both the maternal and offspring generations, the mechanisms by which this is accomplished are rarely known. In birds, females adjust the onset of incubation (coincident with the first egg or after all eggs are laid) in response to the environment during breeding, and thus, indirectly, determine the duration of offspring growth. In the two house finch (Carpodacus mexicanus) populations that breed at the extremes of the species' distribution (Montana and Alabama), females experience highly distinct climatic conditions during nesting. We show that in close association with these conditions, females adjusted jointly the onset of incubation and the sequence in which they produced male and female eggs and consequently modified the growth of sons and daughters. The onset of incubation in newly breeding females closely tracked ambient temperature in a pattern consistent with the maintenance of egg viability. Because of the very different climates in Montana and Alabama, females in these populations showed the opposite patterns of seasonal change in incubation onset and the opposite sex bias in egg-laying order. In females with breeding experience, incubation onset and sex bias in laying order were closely linked regardless of the climatic variation. In nests in which incubation began with the onset of egg laying, the first-laid eggs were mostly females in Montana, but mostly males in Alabama. Because in both populations, male, but not female, embryos grew faster when exposed to longer incubation, the sex-bias produced highly divergent sizes of male and female juveniles between the populations. Overall, the compensatory interaction between the onset of incubation and the sex-biased laying order achieved a compromise between maternal and offspring adaptations and contributed to rapid morphological divergence in sexual dimorphism between populations of the house finch breeding at the climatic extremes of the species range.  相似文献   
4.
Male mating strategies and the mating system of great-tailed grackles   总被引:1,自引:1,他引:0  
Great-tailed grackles (Quiscalus mexicanus) are sexually dimorphic,dichromatic, colonially nesting blackbirds. In this study, males pursued three basic types of conditional mating strategies,each of which employed a different set of mating tactics. Territorialmales defended one or more trees in which several females nested.They achieved reproductive success by siring the offspringof their social mates and through extrapair fertilization.Resident males lived in the colony but did not defend territoriesor have social mates. Transient males passed through the colony, staying no more than a few days, and probably visited more thanone colony. Residents appeared to queue for access to territories,but transients did not. Residents and transients gained allpaternity through extrapair fertilizations and provided noparental care. Territorial males sired the majority of offspring,but residents and transients also sired small numbers of nestlings. Territorial males were larger and had longer tails than nonterritorialmales. The number of social mates was related to body size,and males that sired nestlings were heavier and had longertails than males with no genetic reproductive success. Malesthat gained paternity through extrapair fertilization wereheavier and had longer tails than males that did not. The matingsystem of great-tailed grackles can best be categorized as "non-faithful-female frank polygyny."  相似文献   
5.
Néo DM  Bertollo LA  Filho OM 《Genetica》2000,108(3):211-215
Specimens of Astyanax scabripinnisfrom three different altitudes (1920, 1800 and 700?m) along the Ribeirão Grande stream in the Campos do Jordão region (São Paulo State, Brazil) were investigated. The same diploid number, 2n?=?50, was detected in the three populations, with the following karyotypic constitution: 6M, 22SM, 10ST and 12A. The populations located at 1920 and 1800?m altitude presented a high incidence of B chromosomes varying in number (0–2), shape (meta- and submetacentrics), size (large and small) and sex-related frequency (they were more frequent among females). The two morphologically variant B chromosomes probably evolved from a metacentric macrochromosome, which is the most commonly observed B chromosome in several A. scabripinnispopulations.  相似文献   
6.
The presence of a gill‐derived gland is herein reported for the first time in males of species of Astyanax and related genera; they are described through histological cuts and SEM. The gill‐derived glands described for the Characidae, when fully developed, present a similar structure in different species. The main external feature of gill‐derived glands is the fusion of anteriormost gill filaments on the ventral branch of first gill arch. This fusion is caused by squamous stratified epithelial tissue that covers adjacent filaments, forming a series of chambers. In the region where the gill‐derived gland develops, the secondary lamellae of the gill filaments are much reduced or completely atrophied being characterized by the presence of glandular cells forming nests.  相似文献   
7.
8.
In birds, differences in the extent and position of the binocular visual field reflect adaptations to varying foraging strategies, and the extent of the lateral portion of the field may reflect anti‐predator strategies. The goal of this study was to describe and compare the visual fields of two ground‐foraging passerines, House Finch Carpodacus mexicanus and House Sparrow Passer domesticus. We found that both species have a binocular field type that is associated with the accurate control of bill position when pecking. Both species have eye movements of relatively large amplitude, which can produce substantial variations in the configuration of the binocular fields. We propose that in these ground foragers, their relatively wide binocular fields could function to increase foraging efficiency by locating multiple rather than single food items prior to pecking events. The lateral fields of both species are wide enough to facilitate the detection of predators or conspecifics while head‐down foraging. This suggests that foraging and scanning are not mutually exclusive activities in these species, as previously assumed. Furthermore, we found some slight, but significant, differences between species: House Sparrow binocular fields are both wider and vertically taller, and the blind area is wider than in House Finches. These differences may be related to variations in the degree of eye movements and position of the orbits in the skull.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号