首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2019年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  1997年   1篇
排序方式: 共有5条查询结果,搜索用时 109 毫秒
1
1.
We analyzed phylogenetic relationships among 12 nominal species of starfish in the genera Patiriella and Asterina (Order Valvatida, Family Asterinidae), based on complete sequences for a mitochondrial protein coding gene (cytochrome oxidase subunit I) and five mitochondrial transfer RNA genes (alanine, leucine, asparagine, glutamine, and proline) (1923 bp total). The resulting phylogeny was used to test a series of hypotheses about the evolution of life-history traits. (1) A complex, feeding, planktonic larva is probably ancestral for these starfish, but this is not the most parsimonious reconstruction of ancestral larval states. (2) The feeding larval form was lost at least four times among these species, and three of these losses occurred among members of a single clade. (3) Small adult size evolved before both cases of hermaphroditism and viviparous brooding, but viviparity was not always preceded by an intermediate form of external brooding. (4) An ordered transformation series from feeding planktonic development to viviparous brooding has been predicted for starfish, but we could not find an example of this transformation series. (5) Viviparity evolved recently (< 2 Mya). (6) Both species selection and transformation of lineages may have contributed to the accumulation of species with nonfeeding development among these starfish. (7) Neither Asterina nor Patiriella are monophyletic genera. Larval forms and life-history traits of these starfish have evolved freely under no obvious constraints, contrary to the widely assumed evolutionary conservatism of early development.  相似文献   
2.
In the family Asterinidae, development through a planktonic lecithotrophic brachiolaria larva is common and has evolved independently several times. Here, we describe the lecithotrophic development of the asterinid Stegnaster inflatus, a species endemic to New Zealand. Early development through the blastula and gastrula stages is short, with hatching at the brachiolaria stage occurring within 48 hr. After hatching, larvae are negatively buoyant, and without aeration remain near the bottom of the culture containers. The settled benthic juvenile stage was reached in ~2 weeks. The brachiolaria of S. inflatus shares common characteristics with the planktonic brachiolaria of other asterinids in that the brachiolar attachment apparatus comprises three brachia and a central adhesive disc, although the latter is thin and appears to be reduced. Mortensen (1925, Videns kabelige Meddelelser fra Dansk naturhistorisk Forening i København, 79 (15), 261‐420) had hypothesized that individuals of S. inflatus might brood within the “cave” formed in the interambulacral space between the arms. We found no evidence for brooding, but hypothesize that S. inflatus may have demersal development, on or near the bottom, which has implications for larval dispersal and population structure.  相似文献   
3.
Patiria miniata, a broadcast‐spawning sea star species with high dispersal potential, has a geographic range in the intertidal zone of the northeast Pacific Ocean from Alaska to California that is characterized by a large range gap in Washington and Oregon. We analyzed spatial genetic variation across the P. miniata range using multilocus sequence data (mtDNA, nuclear introns) and multilocus genotype data (microsatellites). We found a strong phylogeographic break at Queen Charlotte Sound in British Columbia that was not in the location predicted by the geographical distribution of the populations. However, this population genetic discontinuity does correspond to previously described phylogeographic breaks in other species. Northern populations from Alaska and Haida Gwaii were strongly differentiated from all southern populations from Vancouver Island and California. Populations from Vancouver Island and California were undifferentiated with evidence of high gene flow or very recent separation across the range disjunction between them. The surprising and discordant spatial distribution of populations and alleles suggests that historical vicariance (possibly caused by glaciations) and contemporary dispersal barriers (possibly caused by oceanographic conditions) both shape population genetic structure in this species.  相似文献   
4.
The Valvatacea is one the most ecologically important, taxonomically diverse, and widespread groups of post‐Palaeozoic (i.e. modern) Asteroidea. Classification within the group has been historically problematic. We present a comprehensively sampled, three‐gene (12S, 16S, early‐stage histone H3) molecular phylogenetic analysis of the Valvatacea. We include five of the six families within the Paxillosida, the monotypic Notomyotida, and 13 of the 16 families of the living Valvatida. The Solasteridae is removed from the Velatida (Spinulosacea) and joins the Ganeriidae and the Leilasteridae as members of the clade containing the Asterinidae. The Poraniidae is supported as the sister group to the large cluster of Valvatacea. Asteropseids and poraniids are phylogenetically distant, contrary to morphological evidence. Several goniasterid‐like ophidiasterids, such as Fromia and Neoferdina are supported as derived goniasterids rather than as Ophidiasteridae. The Benthopectinidae (Notomyotida) are supported as members of the Paxillosida as are two members of the Pseudarchasterinae that have traditionally been considered members of the Goniasteridae. Our data suggest that Antarctic valvataceans may be derived from sister taxa in adjacent regions. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 161 , 769–788.  相似文献   
5.
We document an extreme example of reproductive trait evolution that affects population genetic structure in sister species of Parvulastra cushion stars from Australia. Self-fertilization by hermaphroditic adults and brood protection of benthic larvae causes strong inbreeding and range-wide genetic poverty. Most samples were fixed for a single allele at nearly all nuclear loci; heterozygotes were extremely rare (0.18%); mitochondrial DNA sequences were more variable, but few populations shared haplotypes in common. Isolation-with-migration models suggest that these patterns are caused by population bottlenecks (relative to ancestral population size) and low gene flow. Loss of genetic diversity and low potential for dispersal between high-intertidal habitats may have dire consequences for extinction risk and potential for future adaptive evolution in response to climate and other selective agents.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号