首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2005年   1篇
  2003年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
Three qualities of sound—the directional, the temporal and the spectral—are important for intraspecific communication in Orthoptera. The neural mechanisms employed by identified interneurones for encoding these sound qualities are illustrated by examples of physiological processes found at different levels of the CNS. Discussed are: (1) the creation of directional information by local interneurones in the thorax, and the use of time-intensity trading in sound location; (2) mechanisms for encoding the temporal parameters of sound by interneurones ascending to the brain; (3) frequency-dependent neural filtering of auditory information by local interneurones.  相似文献   
2.
This work presents experiments, modelling and numerical simulation aimed at describing the mechanical response of human ascending aortas in the ring opening test. The objective is to quantify, from the opening angles measured in the test, the residual stress distribution along the artery wall and, afterwards, how this stress pattern changes when the artery is subjected to standard physiological pressures. The cases studied correspond to four groups including both healthy and pathological arteries. The tissues are characterized via tensile test measurements that enable to derive the material parameters of two constitutive models adopted in the present analysis. Overall, the numerical results obtained for all groups were found to be a useful data that allow to estimate the residual stress and their influence on the vessels under normal and hypertension physiological conditions.  相似文献   
3.
Lesion and stimulation experiments suggest that the suboesophageal ganglion (SOG) plays a special role in the control of insect behaviour: in bilateral coordination and by maintaining ongoing motor activity. Anatomical observations indicate that there are descending interneurones (DINs) originating in the SOG in addition to those from the brain. An SOG preparation for sampling both types of DIN intracellularly in walking locusts is described. Forty-three units showing activity changes during leg movements and walking were recorded. Using dye injection six were shown to be through-running axons; one was an SOG ascending interneurone; and eight were SOG DINs, 7 contralateral, one ipsilateral. All fired before or during movements and received various sensory inputs. Many gave complex responses to different modalities, several showing directional preferences. Some SOG neurones showed spontaneous changes in activity; activity outlasting movements; or responses to passive as well as active movements. These preliminary results suggest neuronal substrates for the special functions of the SOG in behaviour. They also indicate that DINs, rather than being simple relays, are part of a dynamic network which includes the motor centres. Regulation of complex and subtle aspects of behaviour may be achieved by dynamic and sequential patterns of activity in groups of DINs, some of which may be multifunctional.  相似文献   
4.
Regeneration and reestablishment of synaptic connections is an important topic in neurobiological research. In the present study, the regeneration of auditory afferents and the accompanying effects in the central nervous system are investigated in nymphs and adults of the bush cricket Tettigonia viridissima L. (Orthoptera: Tettigoniidae). In all animals in which the tympanal nerve is crushed, neuronal tracing shows a regrowth of the afferents into the prothoracic ganglion. This regeneration is seen in both adult and nymphal stages and starts 10–15 days after nerve crushing. Physiological recordings from the leg nerve indicate a recovery of tympanal fibres and a formation of functional connections to interneurones in the same time range. Electrophysiological recordings from the neck connective suggest additional contralateral sprouting of interneurones and the formation of aberrant connections. The regeneration processes of the tympanal nerve in nymphal stages and adults appear to be similar.  相似文献   
5.
6.
7.
Electrical stimulation of mechanosensory afferents innervating hairs on the surface of the exopodite in crayfish Procambarus clarkii (Girard) elicited reciprocal activation of the antagonistic set of uropod motor neurones. The closer motor neurones were excited while the opener motor neurones were inhibited. This reciprocal pattern of activity in the uropod motor neurones was also produced by bath application of acetylcholine (ACh) and the cholinergic agonist, carbamylcholine (carbachol). The closing pattern of activity in the uropod motor neurones produced by sensory stimulation was completely eliminated by bath application of the ACh blocker, d-tubocurarine, though the spontaneous activity of the motor neurones was not affected significantly. Bath application of the acetylcholinesterase inhibitor, neostigmine, increased the amplitude and extended the time course of excitatory postsynaptic potentials (EPSPs) of ascending interneurones elicited by sensory stimulation. These results strongly suggest that synaptic transmission from mechanosensory afferents innervating hairs on the surface of the tailfan is cholinergic.Bath application of the cholinergic antagonists, dtubocurarine (vertebrate nicotinic antagonist) and atropine (muscarinic antagonist) reversibly reduced the amplitude of EPSPs in many identified ascending and spiking local interneurones during sensory stimulation. Bath application of the cholinergic agonists, nicotine (nicotinic agonist) and oxotremorine (muscarinic agonist) also reduced EPSP amplitude. Nicotine caused a rapid depolarization of membrane potential with, in some cases, spikes in the interneurones. In the presence of nicotine, interneurones showed almost no response to the sensory stimulation, probably owing to desensitization of postsynaptic receptors. On the other hand, no remarkable changes in membrane potential of interneurones were observed after oxotremorine application. These results suggest that ACh released from the mechanosensory afferents depolarizes interneurones by acting on receptors similar to vertebrate nicotinic receptors.Abbreviations ACh cetylcholine - mns motor neurones - asc int ascending interneurone  相似文献   
8.
刺激左侧内脏大神经,同时记录肋间神经反射放电(VSR)及脊髓灰质单位电活动。由于 VSR 的阈值相当于内脏神经中 A-delta 纤维的阈值,故以诱发放电阈值等于或略高于 VSR的阈值的单位为 A-delta 单位。阈值等于或高于 VSR 中 C 突起的阈值的单位为 C-单位。我们所观察到的90个 A-delta 单位广泛分布在 Rexed 第Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ层,这和Pomeranz 等报道脊髓灰质中对内脏神经的 A-delta 纤维传入起反应的神经元仅分布在第Ⅴ层有所不同。我们记录到的30个 C 单位分布在第Ⅰ、Ⅳ、Ⅴ、Ⅶ、Ⅶ等层。在64个单位中有62个可观察到内脏大神经和肋间神经传入的会聚。在本工作中,我们还观察到自发放电受刺激内脏大神经抑制的单位。有许多单位的诱发放电出现在 VSR 时程以外,显然不可能参与 VSR 的反射弧。  相似文献   
9.
Gustatory receptors (basiconic sensilla) on the legs of the desert locust, Schistocerca gregaria, are innervated by chemosensory afferents and by a mechanosensory afferent. We show, for the first time, that these mechanosensory afferents form an elaborate detector system with the following properties: 1) they have low threshold displacement angles that decrease with increasing stimulus frequency in the range 0.05–1 Hz, 2) they respond phasically to deflections of the receptor shaft and adapt rapidly to repetitive stimulation, 3) they encode the velocity of the stimulus in their spike frequency and have velocity thresholds lower than 1°/s, and 4) they are directionally sensitive, so that stimuli moving proximally towards the coxa elicit the greatest response.The mechanosensory afferents, but not the chemosensory afferents, make apparently monosynaptic connections with spiking local interneurones in a population with somata at the ventral midline of the metathoracic ganglion. They evoke excitatory synaptic potentials that can sum to produce spikes in the spiking local interneurones. Stimulation of the single mechanosensory afferent of a gustatory receptor can also give rise to long lasting depolarizations, or to bursts of excitatory postsynaptic potentials in the interneurones that can persist for several seconds after the afferent spikes. These interneurones are part of the local circuitry involved in the production of local movements of a leg. The mechanosensory afferents from gustatory receptors must, therefore, be considered as part of the complex array of exteroceptors that provide mechanosensory information to these local circuits for use in adjusting, or controlling locomotion.  相似文献   
10.
Summary The ascending spinal systems in the nurse shark were studied after spinal hemisections by use of the Nauta and Fink-Heimer techniques. The dorsal funicular fibers form a single bundle issuing fibers to the gray substance of the spinal cord, the dorsal funicular nucleus, and the vestibular complex. Some dorsal funicular fibers also appear to contribute to the spinocerebellar tract.The degenerated lateral funicular fibers are segregated into three fasciculi issuing fibers medially as they ascend through the brainstem. The largest target of these fibers is the reticular formation, but diffusely organized axons also reach 1) the gray matter of the spinal cord, 2) the dorsal motor nucleus of the vagus, 3) the nucleus A of the medulla oblongata, 4) the central gray substance of the brainstem, 5) the cerebellar cortex, 6) the cerebellar nucleus, 7) the nucleus intercollicularis, 8) the mesencephalic tectum, and 9) the dorsal thalamus. At the latter site the spinal input appears to partly overlap with the visual input.The results, compared with the strikingly similar findings in other classes of vertebrates, indicate that all vertebrate groups apparently have the same basic components of ascending spinal projections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号