首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2009年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  1999年   2篇
  1998年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
After the end-Permian crisis and the extinction of their four Paleozoic subclasses, crinoids rapidly recovered. This group is classically believed to have radiated from a small surviving clade and to have diversified during the Middle and Upper Triassic from two lineages. Nevertheless, recent findings suggested that several lineages of crinoids had already diversified during the Early Triassic, and that their diversity has been overlooked. Here we describe a new form of holocrinid, Holocrinus nov. sp., from the earliest Spathian (Early Triassic) of southeastern Idaho (USA). So far, the exceptional completeness of sampled specimens, with skeletal elements of arms and stem in connection, is unique for the Early Triassic. They show that derived morphological features had already evolved ∼1.3 million years after the Permian–Triassic boundary, supporting the scenario of a rapid Early Triassic diversification of crinoids.  相似文献   
2.
Traditionally, Panarthropoda (Euarthropoda, Onychophora, Tardigrada) are regarded as being closely related to Annelida in a taxon Articulata, but this is not supported by molecular analyses. Comparisons of gene sequences suggest that all molting taxa (Panarthropoda, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera) are related in a monophyletic taxon Ecdysozoa. An examination of the characters supporting Articulata reveals that only segmentation with a teloblastic segment formation and the existence of segmental coelomic cavities with nephridia support the Articulata, whereas all other characters are modified or reduced in the panarthropod lineage. Another set of characters is presented that supports the monophyly of Ecdysozoa: molting under influence of ecdysteroid hormones, loss of locomotory cilia, trilayered cuticle and the formation of the epicuticle from the tips of epidermal microvilli. Comparative morphology suggests Gastrotricha as the sister group of Ecdysozoa with the synapomorphies: triradiate muscular sucking pharynx and terminal mouth opening. Thus there are morphological characters that support Articulata, but molecular as well as morphological data advocate Ecdysozoa. Comparison of both hypotheses should prompt further thorough and targeted investigations. J. Morphol. 238:263–285, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
3.
Two conflicting hypotheses of protostome relationships, Articulata and Ecdysozoa, are reviewed by evaluating the evidence in favor and against each one of them. Understanding early embryonic development and segmentation in non-arthropod non-annelid protostomes seems crucial to the debate. New ways of coding metazoan matrices, avoiding ground-patterns and higher taxa, and incorporating fossil evidence seems the best way to avoid circular debates. Molecular data served as the catalyzer for the Ecdysozoa hypothesis, although morphological support had been implicitly suggested. Most molecular analyses published so far have shown some support for Ecdysozoa, whereas none has ever supported Articulata. Here, new analyses of up to four nuclear loci, including 18S rRNA, myosin heavy chain II, histone H3 and elongation factor 1- are conducted to test the molecular support for Ecdysozoa, and, at least under some parameter sets, most data sets show a clade formed by the molting animals. In contrast, support for Articulata is not found under any analytical conditions.  相似文献   
4.
5.
The grand game of metazoan phylogeny: rules and strategies   总被引:4,自引:0,他引:4  
Many cladistic analyses of animal phylogeny have been published by authors arguing that their results are well supported. Comparison of these analyses indicates that there can be as yet no general consensus about the evolution of the animal phyla. We show that the various cladistic studies published to date differ significantly in methods of character selection, character coding, scoring and weighting, ground-pattern reconstructions, and taxa selection. These methodological differences are seldom made explicit, which hinders comparison of different studies and makes it impossible to assess a particular phylogeny outside its own scope. The effects of these methodological differences must be considered before we can hope to reach a morphological reference framework needed for effective comparison and combination with the evidence obtained from molecular and developmental genetic studies.  相似文献   
6.
Within the past few years, the phylogenetic tree is discussed controversially regarding the position of the different bilaterian groups. There are two varying views of evolution: the classical one based on morphological structures where the annelids and arthropods are combined in the group of Articulata, and a new hypothesis based on molecular data sets, which divides the protostomian groups in Ecdysozoa (e.g. arthropods, and nematodes) and Lophotrochozoa (e.g. annelids, molluscs, and platyhelminthes). The Na+/K+-ATPase is a highly conserved protein and fulfils a very important role in physiology and maintaining the homeostasis of cells and can be found in almost all eukaryotic animals. Due to its similar molecular structure throughout the animal kingdom the Na+/K+-ATPase is an excellent marker for phylogenetic studies. Here we report the molecular cloning, sequencing and phylogenetic analysis of Na+/K+-ATPase complementary deoxyribonucleic acid (cDNA) of the medical leech Hirudo medicinalis . The cloned cDNA codes for a polypeptide of 1022 amino acids and possesses a predicted molecular mass of 113.33 kDa. Phylogenetic analysis of the complete Na+/K+-ATPase α -subunit of H. medicinalis and sequence data from other Na+/K+-ATPases supports the previously developed 'Ecdysozoa concept' with high posterior probabilities. A common clade comprising annelids and platyhelminthes can be defined, whereas nematodes are in a basal position at the arthropod stem line.  相似文献   
7.
Respiration and the function of brachiopod punctae   总被引:1,自引:0,他引:1  
When tied shut, three genera of punctate terebratulids from the Northeast Pacific [Terebratulina unguicula (Terebratulidina), Terebratalia transversa and Laqueus californianus (Terebratellidina)] take up O2 from the external water (at one-third the rate when gaping). The impunctate rhynchonellid Hemithiris psittacea does not, indicating that punctae admit O2 when the valves are closed. The shells of T. transversa vary from smooth and globose to Spirife r-like alate and costate morphs. The latter have more punctae and greater uptake of O2 through the shell. The alate/costate morphs are most abundant where turbidity is likely to prompt closure. Punctael respiration is faster through the thin shells of Laqueus than the thick ones of Terebratalia. O2deprived articulates gape widely and close slowly when disturbed, but there is no evidence of O2debt. They regulate O2consumption at the same rate from saturation to 0.5 ml·l1, and thus appear adapted to low O2levels. These results have implications for the energetic efficience of articulates and the evolutionary patterns of bivalve molluscs v. articulates.  相似文献   
8.
The early cleavage and gastrulation of the pycnogonid Pycnogonum litorale is investigated in detail by fluorescence microscopy, confocal laser scanning microscopy, and histology. The cleavage is holoblastic with equally sized blastomeres and an irregular radial pattern. There is no stereotypic cell lineage, and timing and spindle directions of individual mitoses vary to a high degree. Gastrulation begins at the 63-cell stage with the retardation and enlargement of a cell which adopts the form of a bottle and fills the interior of the egg, followed by immigration and epiboly of smaller cells surrounding the large bottle-shaped cell. The gastrulation site marks the dorsal side of the embryo and the stomodaeum forms adjacent to the area of gastrulation. The pattern of the early development of Pycnogonum is compared with that of other Pycnogonida resulting in a putative ground pattern of pycnogonid development. Furthermore, our results are discussed in the wider framework of putative arthropod and cycloneuralian relationships. This comparison implies morphological support for the Ecdysozoa.  相似文献   
9.
Annelida, traditionally divided into Polychaeta and Clitellata, are characterized by serial division of their body into numerous similar structures, the segments. In addition, there is a non-segmental part at the front end, the prostomium, and one at the back, the pygidium. New segments develop in a prepygidial proliferation zone. Each segment contains four groups of chaetae made up of β-chitin, a pair of coelomic cavities separated by mesenteries, and septa. The nervous system is a rope-ladder-like ventral nerve cord with a dorsal brain in the prostomium. For the last stem species a trochophore larva and a benthic adult are commonly postulated. There are two conflicting hypotheses describing the systematization of Annelida: the first postulates a sister-group relationship of Polychaeta and Clitellata, the second sees Clitellata as a highly derived taxon forming a subordinate taxon within the polychaetes which, consequently, are regarded as paraphyletic. Depending on the hypothesis, different characters have to be postulated for the stem species of Annelida. Besides segmentation other characters such as nuchal organs, palps and antennae, body wall musculature, cuticle, parapodia as well as structure of the central nervous system and the foregut play an important role in this discussion. Here, the different characters and character states are critically reviewed and analyzed with respect to morphology and function. The consequences for systematization of their phylogenetic interpretation as autapomorphies, synapomorphies or plesiomorphies are outlined. The resulting hypotheses are compared with those relying on molecular data sets.  相似文献   
10.
Embryos and larvae of an isocrinid sea lily, Metacrinus rotundus, are described by scanning electron microscopy. Around hatching (35 h after fertilization), the outer surface of the gastrula becomes ubiquitously covered with short cilia. At 40 h, the hatched swimming embryo develops a cilia‐free zone of ectoderm on the ventral side. By 3 days, the very early dipleurula larva develops a cilia‐free zone ventrally, densely ciliated regions laterally, and a sparsely ciliated region dorsally. At this stage, the posterior and anterior ciliary bands first appear: the former runs along a low ridge separating the densely from the sparsely ciliated epidermal regions, while the latter is visible, at first discontinuously, along the boundary between the densely ciliated lateral regions and the cilia‐free ventral zone. In the late dipleurula larva (5 days after fertilization), the anterior and posterior loops of ciliary bands are well defined. The transition from the dipleurula to the semidoliolaria larva occurs at 6 days as the posterior loop becomes rearranged to form incompletely circumferential ciliary bands. The larva becomes competent to settle at this stage. The arrangement of the ciliary bands on the semidoliolaria is maintained during the second week of development, while the larva retains its competence to settle. The larval ciliary patterns described here are compared with those of stalkless crinoids and eleutherozoan echinoderms. The closest morphological similarities are between M. rotundus and the basal eleutherozoan class Asteroidea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号