首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   1篇
  国内免费   4篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   9篇
  2007年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   8篇
  1992年   7篇
  1991年   6篇
  1990年   17篇
  1989年   10篇
  1988年   11篇
  1987年   11篇
  1986年   11篇
  1985年   15篇
  1984年   8篇
  1983年   9篇
  1982年   5篇
  1979年   1篇
  1978年   5篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
1.
2.
Abstract A purple mutant of Halobacterium halobium was isolated in a previous study. The 'in vitro' absorption spectra of the cells gave a broad shoulder around 570 nm. The amounts of bacteriorhodopsin were high under any growth condition (including aerobic) inhibitory for the wild-type strain. The mutant grew faster under illuminated microaerophilic conditions and showed faster proton extrusion than the wild-type strain. This evidence shows that the mutant has a constitutive bacteriorhodopsin production not influenced by the oxygen concentration in the medium. However, some stimulation by light was found.  相似文献   
3.
An enrichment culture which converted acetate to methane at 60°C was obtained from a thermophilic anaerobic bioreactor. The predominant morphotype in the enrichment was a sheathed gas-vacuolated rod with marked resemblence to the mesophile Methanothrix soehngenii. This organism was isolated using vancomycin treatments and serial dilutions and was named Methanothrix sp. strain CALS-1. Strain CALS-1 grew as filaments typically 2–5 cells long, and cultures showed opalescent turbidity rather than macroscopic clumps. The cells were enclosed in a striated subunit-type sheath and there were distinct cross-walls between the cells, similar to M. soehngenii. The gas vesicles in cells were typically 70 nm in diameter and up to 0.5 m long, and were collapsed by pressures over 3 atm (ca. 300 kPa). Stationary-phase cells tended to have a higher vesicle content than did growing cells, and occasionally bands of cells were seen floating at the top of the liquid in stationary-phase cultures. Acetate was the only substrate of those tested which was used for methanogenesis by strain CALS-1, and acetate was decarboxylated by the aceticlastic reaction. The optimum temperature for growth of strain CALS-1 was near 60°C (doubling time=24–26 h), with no growth occurring at 70°C and 37°C. The optimum pH value for growth was near 6.5 in bicarbonate/CO2 buffered medium and no growth occurred at pH 5.5 or pH 8.4. No growth was obtained below pH 7 when the medium was buffered with 20 mM phosphate. Strain CALS-1 grew in a chemically defined medium and required biotin. Sulfide concentrations over 1 mM were inhibitory to the culture, and growth was more rapid with 1 mM 2-mercaptoethane sulfonate (coenzyme M) or 1 mM titanium citrate as an accessory reductant than with 1 mM cysteine. It is likely that strain CALS-1 represents a new species in the genus Methanothrix.  相似文献   
4.
An intracellular glycogen was purified and characterized from the acetoclastic bacteria Methanothrix str. FE, its average chain length was about 13 glucose residues. Acetyl-CoA was shown to be synthesized by the action of acetate thiokinase; in addition pyruvate synthase, phosphoenolpyruvate synthetase and enzymes of gluconeogenesis were detected in cell extracts. For glycogen synthase activity, both adenosine diphosphate glucose and uridine diphosphate glucose were used as glycosyl donors, apparent K m were, respectively, 8 M for ADPGlc and 625 M for UDPGLe, at the opposite the V m were the same for both precursors. This was in accordance with competition experiments and strongly suggested that only one glucosyl transferase was involved and that ADPGlc was the physiological glycosyl donor in Methanothrix str. FE. In addition branching enzyme activity (1-4-glucan-6-glucosyl transferase) was detected in cell extracts.Abbreviations ADPGlc adenosine diphosphate glucose - UDPGlc uridine diphosphate glucose  相似文献   
5.
Archaeoglobus fulgidus is an extremely thermophilic archaebacterium that can grow at the expense of lactate oxidation with sulfate to CO2 and H2S. The organism contains coenzyme F420, tetrahydromethanopterin, and methanofuran which are coenzymes previously thought to be unique for methanogenic bacteria. We report here that the bacterium contains methylenetetrahydromethanopterin: F420 oxidoreductase (20 U/mg), methenyltetrahydromethanopterin cyclohydrolase (0.9 U/mg), formyltetrahydromethanopterin: methanofuran formyltransferase (4.4 U/mg), and formylmethanofuran: benzyl viologen oxidoreductase (35 mU/mg). Besides these enzymes carbon monoxide: methyl viologen oxidoreductase (5 U/mg), pyruvate: methyl viologen oxidoreductase (0.7 U/mg), and membranebound lactate: dimethylnaphthoquinone oxidoreductase (0.1 U/mg) were found. 2-Oxoglutarate dehydrogenase, which is a key enzyme of the citric acid cycle, was not detectable. From the enzyme outfit it is concluded that in A. fulgidus lactate is oxidized to CO2 via a modified acetyl-CoA/carbon monoxide dehydrogenase pathway involving C1-intermediates otherwise only used by methanogenic bacteria.Non-standard abbreviations APS adenosine 5-phosphosulfate - BV benzyl viologen - DCPIP 2,6-dichlorophenolindophenol - DMN 2,3-dimethyl-1,4-naphthoquinone - DTT DL-1,4-dithiothreitol - H4F tetrahydrofolate - H4MPT tetrahydromethanopterin - CH2 H4MPT, methylene-H4MPT - CH H4MPT, methenyl-H4MPT - Mes morpholinoethane sulfonic acid - MFR methanofuran - Mops morpholinopropane sulfonic acid - MV methyl viologen - Tricine N-tris(hydroxymethyl)-methylglycine - U mol product formed per min  相似文献   
6.
A thermophilic anaerobic which produced methane from formate and H2 and CO2 was isolated from a bench-scale digester treating a mixture of solid wastes at 55°C, after enrichment cultures on sodium acetate. The cells were slightly crooked rods occurring singly or in filaments. The bacterium was not motile, and stained Gram positive. Colonies appearing after 1 week of incubation were white with filamentous edges and 1 mm in diameter. The organism used H2:CO2 or formate as an energy source. Yeast extract was not required but stimulated growth significantly. Casamino acids were stimulatory and could serve as a nitrogen source. Cysteine was used as a sulfur source. The optimum pH for growth was 7.5. Growth occurred from 35 to 70°C with an optimum at 55°C. The deoxyribonucleic acid base composition was 49.2 mol% guanine plus cytosine. Though this isolate conforms to Methanobacterium thermoformicium, its proper assignment awaits further studies. It has been deposited in the Deutsche Sammlung von Mikroorganismen as strain DSM 3012.This work was supported in part by the Conseil Régional Nord/Pas-de-Calais  相似文献   
7.
The distribution of the F420-reactive and F420-nonreactive hydrogenases from the methylotrophic Methanosarcina strain Gö1 indicated a membrane association of the F420-nonreactive enzyme. The membrane-bound F420-nonreactive hydrogenase was purified 42-fold to electrophoretic homogeneity with a yield of 26.7%. The enzyme had a specific activity of 359 mol H2 oxidized · min-1 · mg protein-1. The purification procedure involved dispersion of the membrane fraction with the detergent Chaps followed by anion exchange, hydrophobic and hydroxylapatite chromatography. The aerobically prepared enzyme had to be reactivated anaerobically. Maximal activity was observed at 80°C. The molecular mass as determined by native gel electrophoresis and gel filtration was 77000 and 79000, respectively. SDS gel electrophoresis revealed two polypeptides with molecular masses of 60000 and 40000 indicating a 1:1 stoichiometry. The purified enzyme contained 13.3 mol S2-, 15.1 mol Fe and 0.8 mol Ni/mol enzyme. Flavins were not detected. The amino acid sequence of the N-termini of the subunits showed a higher degree of homology to cubacterial uptake-hydrogenases than to F420-dependent hydrogenases from other methanogenic bacteria. The physiological function of the F420-nonreactive hydrogenase from Methanosarcina strain Gö1 is discussed.Abbreviations transmembrane electrochemical gradient of H- - CoM-SH 2-mercaptoethanesulfonate - F420 (N-l-lactyl--l-glutamyl)-l-glutamic acid phospodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin-5-phosphate - F420H2 reduced F420 - HTP-SH 7-mercaptoheptanoylthreonine phosphate - Mb. Methanobacterium - PMSF phenylmethyl-sulfonylfluoride - Cl3AcOH trichloroacetic acid  相似文献   
8.
Penetration of glucose into cells of several extremely halophilic archaebacteria of the Halobacterium and Haloferax genera (Halobacterium saccharovorum and Halobacterium salinarium, Haloferax volcanii and Haloferax mediterranei) has been studied. Some characteristics of transport systems of carbohydrate-utilizing halobacteria Halobacterium saccharovorum, Haloferax mediterranei and Haloferax volcanii (pH and temperature optima, stereospecificity, kinetic parameters) have been determined. Inability of H. salinarium cells for active glucose transport has been shown. The dependence of glucose transport on the Na+ ions gradient (on the whole cells and membrane vesicles) has been demonstrated. Cells or membrane vesicles of carbohydrate-utilizing halobacteria grown in media containing this sugar indicated the activation of glucose transport, whereas cells grown in media without sugars did not. This fact has allowed us to conclude that corresponding transport systems are inducible.  相似文献   
9.
A spin label study has been carried out on bipolar lipids extracted from Sulfolobus solfataricus, an extreme thermophilic archaebacterium growing at about 85°C and pH 3. These lipids are cyclic diisopranyl tetraether molecules, quite different from the usual fatty acid lipids. Two hydrolytic fractions of the membrane complex lipids have been studied: the symmetric lipid glycerol-dialkyl-glycerol-tetraether (GDGT) and the asymmetric lipid glyceroldialkyl-nonitol-tetraether (GDNT). The ESR spectra confirm the results previously obtained from calorimetric and X-ray diffraction experiments showing a polymorphic behaviour of these lipids and indicating the critical temperature ranges at which structural transitions occur. Moreover, the present study adds information on the dynamics of the different portions of the hydrophobic chain. ST-ESR measurements show correlation times ranging from 10-8 s up to 10-5 s, depending upon the lipid sample, the label position and the degree of hydration. At very high temperatures, i.e. the physiological temperatures of Sulfolobus solfataricus, the nonitol head groups of the asymmetric lipids form a strongly immobilized structure. Indeed, the molecular correlation times of the outermost hydrophobic portion of GDNT are higher, by a factor up to 103, than those of usual monopolar lipids. Anisotropic motional behaviour is observed even at such very high temperatures. Possible biological implications are discussed.Abbreviations used are ESR electron spin resonance - St-ESR saturation transfer electron spin resonance - GDGT glyceroldialkyl-glycerol-tetracther - GDNT glycerol-dialkyl-nonitoltetraether - 5 SASL 12SASL and 16SASL, stearic acid spin labels, N-oxyl-4,4-dimethyloxazolidine derivatives of 5-ketostearic acid, 12-ketostearic acid and 16-ketostearic acid, respectively - DSC differential scanning calorimetry  相似文献   
10.
Ten strains representing a novel genus of marine thermophilic archaebacteria growing at between 70 and 103°C with an optimal growth temperature of 100°C and a doubling time of only 37 min were isolated from geothermally heated marine sediments at the beach of Porto di Levante, Vulcano, Italy. The organisms are spherical-shaped, 0.8 to 2.5 m in width and exhibit monopolar polytrichous flagellation. They are strictly anaerobic heterotrophs, growing on starch, maltose, peptone and complex organic substrates. Only CO2 and H2 could be detected as metabolic products, the latter being inhibitory to growth at high concentrations. Hydrogen inhibition can be prevented by the addition of So, whereupon H2S is formed in addition, most likely as the result of a detoxification reaction. The GC-content of the DNA of isolate Vc 1 is 38 mol%. The new genus is named Pyrococcus, the fireball. Type species and strain is Pyrococcus furiosus Vc 1 (DSM 3638).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号