首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5325篇
  免费   502篇
  国内免费   675篇
  2024年   35篇
  2023年   145篇
  2022年   187篇
  2021年   245篇
  2020年   240篇
  2019年   296篇
  2018年   235篇
  2017年   218篇
  2016年   250篇
  2015年   253篇
  2014年   273篇
  2013年   420篇
  2012年   187篇
  2011年   198篇
  2010年   181篇
  2009年   274篇
  2008年   320篇
  2007年   291篇
  2006年   285篇
  2005年   209篇
  2004年   182篇
  2003年   152篇
  2002年   168篇
  2001年   140篇
  2000年   104篇
  1999年   85篇
  1998年   107篇
  1997年   70篇
  1996年   82篇
  1995年   66篇
  1994年   65篇
  1993年   59篇
  1992年   53篇
  1991年   42篇
  1990年   38篇
  1989年   58篇
  1988年   24篇
  1987年   35篇
  1986年   31篇
  1985年   41篇
  1984年   28篇
  1983年   20篇
  1982年   20篇
  1981年   21篇
  1980年   17篇
  1979年   10篇
  1978年   19篇
  1977年   8篇
  1976年   9篇
  1975年   4篇
排序方式: 共有6502条查询结果,搜索用时 15 毫秒
1.
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. Pathogenesis associated with enterohemorrhagic E. coli involves direct delivery of virulence factors from the bacteria into epithelial cell cytosol via a syringe-like organelle known as the type III secretion system. The type III secretion system protein EspD is a critical factor required for formation of a translocation pore on the host cell membrane. Here, we show that recombinant EspD spontaneously integrates into large unilamellar vesicle (LUV) lipid bilayers; however, pore formation required incorporation of anionic phospholipids such as phosphatidylserine and an acidic pH. Leakage assays performed with fluorescent dextrans confirmed that EspD formed a structure with an inner diameter of ∼2.5 nm. Protease mapping indicated that the two transmembrane helical hairpin of EspD penetrated the lipid layer positioning the N- and C-terminal domains on the extralumenal surface of LUVs. Finally, a combination of glutaraldehyde cross-linking and rate zonal centrifugation suggested that EspD in LUV membranes forms an ∼280–320-kDa oligomeric structure consisting of ∼6–7 subunits.  相似文献   
2.
The temporal variation of stoichiometry between consumed oxygen and oxidized carbon was investigated for the aerobic mineralization of leachates from aquatic macrophytes. Seven species of aquatic plants, viz. Cabomba piauhyensis, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Scirpus cubensisand Utricularia breviscapa, were collected from Òleo lagoon located in the floodplain of Mogi-Guacu river (São Paulo State, Brazil). After being collected, the plants were washed, oven-dried and triturated. In order to obtain the leachate, the fragments were submitted to an aqueous extraction (cold). Mineralization chambers were incubated at 20 °C containing leachates dissolved in water samples from Òleo lagoon to a final concentration of ca. 200 mg l–1on carbon basis. The chambers were maintained under aerobic conditions; the concentrations of the organic carbon (particulate and dissolved) and the dissolved oxygen were measured during approximately 80 days. Elemental analysis of the detritus and the concentrations of the remaining material (DOC and POC) were used to determine the amounts of mineralized organic carbon. The data were analyzed with first-order kinetics models, from which the daily rates of consumption (carbon and oxygen) and the stoichiometry (O/C) were determined. In the early phase of mineralization the O/C rates increased before reaching a maximum, after which they tended to decrease. For the mineralization of leachates from C. giganteus, S. auriculata and U. breviscapa, the decrease was relatively slow. For all substrata the initial values were smaller than 1, and ranged from 0.42 (S. cubensis) to 0.81 (C. piauhyensis). The maximum values were within the range from 0.58 (U. breviscapa) to 23.1 (E. najas) and at their highest 26th (C. piauhyensis) and 106th (C. giganteus) days. These variations are believed to be associated with the chemical composition of the leachates, with their transformations and alterations of metabolic pathways involved in the mineralization.  相似文献   
3.
4.
We described the bacterial diversity of walnut grove soils under organic and conventional farming. The bacterial communities of rhizospheric and nonrhizospheric soils of pecan tree (Carya illinoensis K. Koch) were compared considering two phenological stages (sprouting and ripening). Sixteen operational taxonomic units (OTUs) were identified significantly more abundant according to the plant development, only one according to the farming condition, and none according to the soil origin. The OTUs specificaly abundant according to plant development included Actinobateria (2) and Betaproteobacteria (1) related OTUs more abundant at the sprouting stage, while at the fruit ripening (FR) stage the more abundant OTUs were related to Actinobacteria (6), Alphaproteobacteria (6), and unclassified Bacteria (1). The Gaiellaceae OTU18 (Actinobacteria) was more abundant under conventional farming. Thus, our study revealed that the plant development stage was the main factor shaping the bacterial community structure, while less influence was noticed for the farming condition. The bacterial communities exhibited specific metabolic capacities, a large range of carbon sources being used at the FR stage. The identified OTUs specifically more abundant represent indicators providing useful information on soil condition, potential tools for the management of soil bacterial communities.  相似文献   
5.
6.
7.
8.
《Plant Ecology & Diversity》2013,6(2-3):227-241
Background: Although forest floor forms a large biomass pool in forested peatlands, little is known about its role in ecosystem carbon (C) dynamics.

Aim: We aimed to quantify forest floor photosynthesis (P FF) and respiration (R FF) as a part of overall C dynamics in a drained peatland forest in southern Finland.

Methods: We measured net forest floor CO2 exchange with closed chambers and reconstructed seasonal CO2 exchange in the prevailing plant communities.

Results: The vegetation was a mosaic of plant communities that differed in CO2 exchange dynamics. The reconstructed growing season P FF was highest in the Sphagnum community and lowest in the feather moss communities. On the contrary, R FF was highest in the feather moss communities and lowest in the Sphagnum community. CO2 assimilated by the forest floor was 20–30% of the total CO2 assimilated by the forest. The forest floor was a net CO2 source to the atmosphere, because respiration from ground vegetation, tree roots and decomposition of soil organic matter exceeded the photosynthesis of ground vegetation.

Conclusions: Tree stand dominates C fluxes in drained peatland forests. However, forest floor vegetation can have a noticeable role in the C cycle of peatlands drained for forestry. Similarly to natural mires, Sphagnum moss-dominated communities were the most efficient assimilators of C.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号