首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   5篇
  2003年   1篇
  1999年   1篇
  1998年   2篇
  1994年   2篇
  1992年   1篇
  1985年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
2.
Recent speciation research has generally focused on how lineages that originate in allopatry evolve intrinsic reproductive isolation, or how ecological divergence promotes nonallopatric speciation. However, the ecological basis of allopatric isolation, which underlies the most common geographic mode of speciation, remains poorly understood and largely unstudied. Here, we explore the ecological and evolutionary factors that promote speciation in Desmognathus and Plethodon salamanders from temperate eastern North America. Based on published molecular phylogenetic estimates and the degree of geographic range overlap among extant species, we find strong evidence for a role for geographic isolation in speciation. We then examine the relationship between climatic variation and speciation in 16 sister-taxon pairs using geographic information system maps of climatic variables, new methods for modeling species' potential geographic distributions, and data on geographic patterns of genetic variation. In contrast to recent studies in tropical montane regions, we found no evidence for parapatric speciation along climatic gradients. Instead, many montane sister taxa in the Appalachian Highlands inhabit similar climatic niches and seemingly are allopatric because they are unable to tolerate the climatic conditions in the intervening lowlands. This temporal and spatial-ecological pattern suggests that niche conservatism, rather than niche divergence, plays the primary role in promoting allopatric speciation and montane endemism in this species-rich group of vertebrates. Our results demonstrate that even the relatively subtle climatic differences between montane and lowland habitats in eastern North America may play a key role in the origin of new species.  相似文献   
3.
Knoepp  Jennifer D.  Swank  Wayne T. 《Plant and Soil》1998,204(2):235-241
We measured nitrogen (N) transformation rates for six years to examine temporal variation across the vegetation and elevation gradient that exists within the Coweeta Hydrologic Laboratory. Net N mineralization and nitrification rates were measured using 28-day in situ closed core incubations. Incubations were conducted at various intervals, ranging from monthly during the growing season, to seasonally based on vegetation phenology. Vegetation types included oak-pine, cove hardwoods, low elevation mixed oak, high elevation mixed oak, and northern hardwoods. Elevations ranged from 782 to 1347 m. Nitrogen transformation rates varied with vegetation type. Mineralization rates were lowest in the oak-pine and mixed oak sites averaging <1.2 mg N kg soil-1 28 day-1. Rates in the cove hardwood site were greater than all other low elevation sites with an annual average of 3.8 mg N kg soil-1 28 day-1. Nitrogen mineralization was greatest in the northern hardwood site averaging 13 mg N kg soil-1 28 day-1. Nitrification rates were typically low on four sites with rates <0.5 mg N kg soil-1 28 day-1. However, the annual average nitrification rate of the northern hardwood site was 6 mg N kg soil-1 28 days-1. Strong seasonal trends in N mineralization were observed. Highest rates occurred in spring and summer with negligible activity in winter. Seasonal trends in nitrification were statistically significant only in the northern hardwood site. Nitrogen mineralization was significantly different among sites on the vegetation and elevation gradient. While N mineralization rates were greatest at the high elevation site, vegetation type appears to be the controlling factor.  相似文献   
4.
Understanding human disturbance regimes is crucial for developing effective conservation and ecosystem management plans and for targeting ecological research to areas that define scarce ecosystem services. We evaluate and develop a forecasting model for land-use change in the Southern Appalachians. We extend previous efforts by (a) addressing the spatial diffusion of human populations, approximated by building density, (b) examining a long time period (40 years, which is epochal in economic terms), and (c) explicitly testing the forecasting power of the models. The resulting model, defined by linking a negative binomial regression model of building density with a logit model of land cover, was fit using spatially referenced data from four study sites in the Southern Appalachians. All fitted equations were significant, and coefficient estimates indicated that topographic features as well as location significantly shape population diffusion and land use across these landscapes. This is especially evident in the study sites that have experienced development pressure over the last 40 years. Model estimates also indicate significant spatial autocorrelation in land-use observations. Forecast performance of the models was evaluated by using a separate validation data set for each study area. Depending on the land-use classification scheme, the models correctly predicted between 68% and 89% of observed land uses. Tests based on information theory reject the hypothesis that the models have no explanatory power, and measures of entropy and information gain indicate that the estimated models explain between 47% and 66% of uncertainty regarding land-use classification. Overall, these results indicate that modeling land-cover change alone may not be useful over the long run, because changing land cover reflects the outcomes of more than one human process (for example, agricultural decline and population growth). Here, additional information was gained by addressing the spatial spread of human populations. Furthermore, coarse-scale measures of the human drivers of landscape change (for example, population growth measured at the county level) appear to be poor predictors of changes realized at finer scales. Simulations demonstrate how this type of approach might be used to target scarce resources for conservation and research efforts into ecosystem effects. Received 13 March 1998; accepted 30 September 1998  相似文献   
5.
Abstract. The tree and shrub species on a 16-ha watershed in the Coweeta Basin were sampled in 1984 and again in 1991 to determine the effects of drought on tree species composition and basal area growth. Mortality and radial growth were determined for tree species within three community types that represent a moisture gradient from moist to dry: cove-hardwoods > mixed-oak > oak-pine. Tree mortality from 1984 to 1991 was 20% and 23% in the cove-hardwoods and mixed-oak communities, respectively, compared to only 12% in the oak-pine type. With the exception of Oxydendrum arboreum and Robinia pseudoacacia, the oaks had higher percentage mortality than any other genus; Quercus velutina had 29%, 37%, and 20% mortality in the cove-hardwoods, mixed-oak, and oak-pine types, respectively; Quercus prinus had 23% mortality in the mixed-oak type; Quercus coccinea had 36% mortality in the mixed-oak type; and Quercus marilandica had 27% mortality in the oak-pine type. Mortality occurred mostly in the small-size class individuals (< 10 cm in diameter) for all species, suggesting that thinning was still an important process contributing to mortality 29 yr after clearcutting. Although growth of Liriodendron tulipifera was much higher than growth of either Quercus prinus or Quercus coccinea, growth in Liriodendron was significantly reduced by the 1985–88 drought and no growth reduction was observed for these two dominant Quercus species during the same time period.  相似文献   
6.
Reduction in body size is a major response to climate change, yet evidence in globally imperiled amphibians is lacking. Shifts in average population body size could indicate either plasticity in the growth response to changing climates through changes in allocation and energetics, or through selection for decreased size where energy is limiting. We compared historic and contemporary size measurements in 15 Plethodon species from 102 populations (9450 individuals) and found that six species exhibited significant reductions in body size over 55 years. Biophysical models, accounting for actual changes in moisture and air temperature over that period, showed a 7.1–7.9% increase in metabolic expenditure at three latitudes but showed no change in annual duration of activity. Reduced size was greatest at southern latitudes in regions experiencing the greatest drying and warming. Our results are consistent with a plastic response of body size to climate change through reductions in body size as mediated through increased metabolism. These rapid reductions in body size over the past few decades have significance for the susceptibility of amphibians to environmental change, and relevance for whether adaptation can keep pace with climate change in the future.  相似文献   
7.
8.
9.
As human land uses expand across the landscape, the management practices of private landowners are an essential part of effective conservation. Early successional habitats (ESH) and the species that depend on them are a priority in the eastern United States, and efforts to create ESH on private lands has primarily focused on forest landowners and timber harvests. Private pasture lands in a forested landscape present an additional opportunity to create and maintain ESH, yet our understanding of landowner values and attitudes about management strategies in pastures is lacking. To address this, we surveyed private landowners in 5 Virginia counties who own ≥10.1 ha at >610 m elevation (n = 503). Our primary objective was to understand how a variety of factors such as landowner values, past experience with habitat management, and perceived barriers to carrying out habitat management are associated with private landowner intention to carry out 7 ESH management strategies (i.e., reduced mowing, reduced grazing, timber harvests within forest, timber harvests at a field-forest border, prescribed fire, use of machinery, and use of herbicides to control invasive species) for the benefit of wildlife in the next 5 years. We used boosted regression trees to determine which factors best predicted the intention to carry out each management strategy. We were able to predict accuracy >75% of the time for landowner intention to engage in open pasture and timber management strategies. Landowner values were not consistent across the different management strategies; landowners likely to reduce mowing or grazing valued ecological aspects of their land (e.g., pollinator habitat, water quality), whereas landowners likely to harvest timber valued hunting and revenue. Past experience with wildlife management was the strongest predictor of likelihood to reduce mowing and grazing. Our results suggest that expanding outreach efforts to include pasture management options would engage a broader set of landowners in creating ESH, especially if such efforts highlighted the benefits to pollinator species, water quality, and enhanced opportunities for hunting and other types of recreation. © 2021 The Wildlife Society.  相似文献   
10.
The recent infestation of southern Appalachian eastern hemlock stands by hemlock woolly adelgid (HWA) is expected to have dramatic and lasting effects on forest structure and function. We studied the short-term changes to the carbon cycle in a mixed stand of hemlock and hardwoods, where hemlock was declining due to either girdling or HWA infestation. We expected that hemlock would decline more rapidly from girdling than from HWA infestation. Unexpectedly, in response to both girdling and HWA infestation, hemlock basal area increment (BAI) reduced substantially compared to reference hardwoods in 3 years. This decline was concurrent with moderate increases in the BAI of co-occurring hardwoods. Although the girdling treatment resulted in an initial pulse of hemlock needle inputs, cumulative litter inputs and O horizon mass did not differ between treatments over the study period. Following girdling and HWA infestation, very fine root biomass declined by 20–40% in 2 years, which suggests hemlock root mortality in the girdling treatment, and a reduction in hemlock root production in the HWA treatment. Soil CO2 efflux (E soil) declined by approximately 20% in 1 year after both girdling and HWA infestation, even after accounting for the intra-annual variability of soil temperature and moisture. The reduction in E soil and the concurrent declines in BAI and standing very fine root biomass suggest rapid declines in hemlock productivity from HWA infestation. The accelerated inputs of detritus resulting from hemlock mortality are likely to influence carbon and nutrient fluxes, and dictate future patterns of species regeneration in these forest ecosystems. AEN performed research and analyzed data; NW performed research, analyzed data, and wrote the article; CRF contributed new methods, analyzed data, and wrote the article; RLH designed the study; JMV conceived of and designed the study; and BDK performed research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号