首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   23篇
  国内免费   11篇
  2024年   1篇
  2023年   7篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   9篇
  2018年   15篇
  2017年   4篇
  2016年   7篇
  2015年   14篇
  2014年   27篇
  2013年   27篇
  2012年   15篇
  2011年   26篇
  2010年   23篇
  2009年   22篇
  2008年   20篇
  2007年   29篇
  2006年   26篇
  2005年   15篇
  2004年   17篇
  2003年   18篇
  2002年   12篇
  2001年   7篇
  2000年   7篇
  1999年   18篇
  1998年   11篇
  1997年   10篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1987年   2篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1976年   1篇
排序方式: 共有438条查询结果,搜索用时 15 毫秒
1.
Increasing evidence suggests that apolipoprotein D (apoD) could play a major role in mediating neuronal degeneration and regeneration in the CNS and the PNS. To investigate further the temporal pattern of apoD expression after experimental traumatic brain injury in the rat, male Sprague-Dawley rats were subjected to unilateral cortical impact injury. The animals were killed and examined for apoD mRNA and protein expression and for immunohistological analysis at intervals from 15 min to 14 days after injury. Increased apoD mRNA and protein levels were seen in the cortex and hippocampus ipsilateral to the injury site from 48 h to 14 days after the trauma. Immunohistological investigation demonstrated a differential pattern of apoD expression in the cortex and hippocampus, respectively: Increased apoD immunoreactivity in glial cells was detected from 2 to 3 days after the injury in cortex and hippocampus. In contrast, increased expression of apoD was seen in cortical and hippocampal neurons at later time points following impact injury. Concurrent histopathological examination using hematoxylin and eosin demonstrated dark, shrunken neurons in the cortex ipsilateral to the injury site. In contrast, no evidence of cell death was observed in the hippocampus ipsilateral to the injury site up to 14 days after the trauma. No evidence of increased apoD mRNA or protein expression or neuronal pathology by hematoxylin and eosin staining was detected in the contralateral cortex and hippocampus. Our results reveal induction of apoD expression in the cortex and hippocampus following traumatic brain injury in the rat. Our data also suggest that increased apoD expression may play an important role in cortical neuronal degeneration after brain injury in vivo. However, increased expression of apoD in the hippocampus may not necessarily be indicative of neuronal death.  相似文献   
2.
Summary Affinity purified preparations of the galactose-binding lectin from gastrulating chick blastoderms consist of three main polypeptides. Two of these have been identified as the 14 kD and 16 kD galactose-binding lectins. A third one migrates in SDS-PAGE gels with a relative molecular weight of 6,500±500 and has been identified as an apolipoprotein (Apo) of plasma very low density lipoproteins, Apo-VLDL-II. We have studied the localization of these polypeptides using immunofluorescence and ultrastructural immunocytochemistry with peroxidase and protein-A gold. The 14 kD lectin occurs in the intracellular yolk where it is mainly present within the electron lucent component. The 16 kD is also present in the intracellular yolk platelets, but tends to predominate in the electron-dense component. In addition, the 16 kD lectin is also present in pleiomorphic yolk-associated organelles and in the extracellular matrix. Apo-VLDL-II is also localized in the electron-lucent component of the yolk platelet and in the extracellular matrix. Our results suggest that the lectin(s) are associated with Apo-VLDL-II in the yolk platelet, and may subsequently become externalized.  相似文献   
3.
载脂蛋白多基因家族分子进化的研究   总被引:2,自引:2,他引:0  
王乐  柴建华 《遗传学报》1994,21(2):81-95
与脂质运输有关的载脂蛋白基因构成一个复杂的多基因家族。为探讨这种演化时间长的基因家族的进化规律,本文首先建立了一种在非均衡进化速率条件下计算系统发生树中任意分支长度的简易方法,并可在此基础上算出无根分支系统树中分歧年代的期望值。进一步对本文科10个种属共26种载脂蛋白的系统演作作了实际分析,结果提示:①ApoA-I'ApoA-IV,ApoE及ApoA-II的共同祖先可能在奥陶纪水生脊椎动物中就已存  相似文献   
4.
用高效液相层析(HPLC)对北京鸭血清高密度脂蛋白(HDL)的所有载脂蛋白(apo)分离纯化,得五个主要apo峰,经SDS-PAGE鉴定,均为单一带;并做了IEF、糖基含量分析;对其中含量高的四个apo峰样进行了氨基酸组成测定和N-端部分氨基酸序列分析;从所做理化性质的研究,发现北京鸭血清HDL中的主要apo为:A-Ⅰ、C-Ⅲ_o、apoC-Ⅲ_s(s=1,2)、apoC's及可能的A-Ⅲ,几乎不含E和A-Ⅱ_o北京鸭HDL中apo的上述组成特点明显不同于易患动脉粥样硬化(As)的人及兔等动物,在一定程度上决定了北京鸭HDL的形成与代谢具有其特点,该特点与北京鸭不易形成As密切相关。  相似文献   
5.
6.
Abstract: The effects of age on basal and lesion-induced changes in astrocyte RNA messages reported to respond to neurodegeneration were examined in the mouse brain. The first study found an age-related increase in glial fibrillary acidic protein RNA throughout the brain. Other astrocyte RNAs remained generally stable with age. We hypothesize this increase is due to astrocytes undergoing a mild reaction to the small amount of synaptic degeneration occurring with usual aging. To test this theory, we used an experimental model of modest synaptic loss in the hippocampus by transecting the fimbria/fornix bundle in mice and examined the same series of messages. In situ hybridization revealed the expected increase in glial fibrillary acidic protein RNA after the lesion; however, we unexpectedly found that aged mice showed a greater magnitude of this response, which appeared to develop more slowly. There was no significant change in the hippocampus for any of the other messages, although responses were observed at the site of transection. This study supports the idea that the age-related increase in glial fibrillary acidic protein may be secondary to modest synaptic degeneration. We also demonstrated an exaggerated reactive astrocytic response in aged mice, which may be associated with age-related deficits in reactive synaptogenesis and behavioral recovery in normal aging.  相似文献   
7.
Low-density lipoproteins isolated between density 1.02 and 1.063 g/cm3 from normal fasting human plasma, show strong resonance Raman spectra due to the presence of beta-carotene. Three intense bands, at 1010, 1160 and 1530 cm-1, are assigned to the stretching vibrations of -C-CH3, = C-C = and -C = C- bonds, respectively, of beta-carotene. High-resolution spectra of the 1500-1600 cm-1 region reveal multiple features, suggesting the coexistence of several structural populations of beta-carotene. The modifications of lipoproteins with pH and temperature (30 degrees-42 degrees) change the resonance Raman spectra of beta-carotene. The specific binding of LDL at pH 7.0 by fibroblast cells is suppressed. Our experiments thus suggest that physical and chemical perturbations of plasma lipoproteins modify the lipid-protein interactions and thereby alter the configurational distribution of beta-carotene molecules within these particles.  相似文献   
8.
Lecithin:cholesterol acyltransferase (LCAT) is instrumental in high-density lipoprotein (HDL) maturation, but high LCAT levels do not predict low cardiovascular risk. LCAT may affect antioxidative or anti-inflammatory properties of HDL. We determined the relationship of plasma high-sensitivity C-reactive protein (CRP) with LCAT activity and evaluated whether LCAT activity modifies the decreasing effect of HDL cholesterol (HDL-C) on CRP, as an estimate of its anti-inflammatory properties. Plasma HDL-C, apolipoprotein (apo) A-I and LCAT activity (exogenous substrate method) were measured in 260 nondiabetic men without cardiovascular disease. CRP was correlated inversely with HDL-C and apo A-I, and positively with LCAT activity (P < 0.01 to 0.001). Multivariate regression analysis demonstrated that age- and smoking-adjusted plasma CRP levels were associated negatively with HDL-C (β = − 0.224, P < 0.001) and positively with LCAT activity (β = 0.119, P = 0.034), as well as with the interaction between HDL-C and LCAT activity (β = 0.123, P = 0.026). There was also an interaction between apo A-I and LCAT activity on CRP (β = 0.159, P = 0.005). These relationships remained similar after adjustment for apo B-containing lipoproteins. In conclusion, the inverse relationship of HDL-C with CRP is attenuated by LCAT activity at higher HDL-C levels. It is hypothesized that LCAT could mitigate HDL's anti-inflammatory or antioxidative properties at higher HDL-C concentrations.  相似文献   
9.
Rapp A  Gmeiner B  Hüttinger M 《Biochimie》2006,88(5):473-483
Apolipoprotein E (apoE) has been genetically linked to late-onset Alzheimer's disease. From the three common alleles (epsilon2, epsilon3 and epsilon4), epsilon4 has been suggested to promote amyloid beta (Ass) plaque fibrillation, one hallmark of Alzheimer's disease. It has been demonstrated that altered lipid content of hippocampal plasma membrane coincides with the disease. In this study, we show for the first time that the apoE dependent cholesterol metabolism in hippocampal neurons is higher than that of hippocampal astrocytes. Further, apoE-bound cholesterol is highly incorporated in membranous compartments in hippocampal neurons, whereas hippocampal astrocytes show higher intracellular distribution. This is an effect that coincides with cell-type dependent difference of low density lipoprotein receptor (LDLR) family member expression. Hippocampal neurons express high levels of the LDLR related protein (LRP), whereas hippocampal astrocytes are highly positive for LDLR. We could also demonstrate an apoE isoform (apoE2, apoE3 and apoE4) dependent cholesterol uptake in both cells types. In hippocampal neurons, we could find a decreased apoE4-bound cholesterol uptake. In contrast, hippocampal astrocytes show decreased internalization of apoE2-bound cholesterol. In addition, lipidated apoE4 is little associated with neurites in hippocampal neurons in comparison to the other two isoforms. In contrary, hippocampal astrocytes show faint apoE2 immunocytostaining intensity. Data presented indicate that the role of apoE4 in cholesterol homeostasis and apolipoprotein cell association is more pronounced in hippocampal neurons, showing significant alterations compared to the other two isoforms, suggesting that hippocampal neurons are affected by apoE4 associated altered cholesterol metabolism compared to hippocampal astrocytes.  相似文献   
10.
Lipid droplets (LDs) are ubiquitous cellular organelles for lipid storage which are composed of a neutral lipid core bounded by a protein decorated phospholipid monolayer. Although lipid storage is their most obvious function, LDs are far from inert as they participate in maintaining lipid homeostasis through lipid synthesis, metabolism, and transportation. Furthermore, they are involved in cell signaling and other molecular events closely associated with human disease such as dyslipidemia, obesity, lipodystrophy, diabetes, fatty liver, atherosclerosis, and others. The last decade has seen a great increase in the attention paid to LD biology. Regardless, many fundamental features of LD biology remain obscure. In this review, we will discuss key aspects of LD biology including their biogenesis, growth and regression. We will also summarize the current knowledge about the role LDs play in human disease, especially from the perspective of the dynamics of the associated proteins. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号