首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
  国内免费   1篇
  2023年   1篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
1.
Peptidases, highly specific toward several synthetic chromogenic peptides, were found in the mycelia of four arthropod pathogenic fungi: Aphanomyces astaci, Beauveria bassiana, Metarrhizium anisopliae, and Paecilomyces farinosus. A. astaci peptidases had high hydrolyzing activities toward most of the peptides, especially those with arginine in the P1 position, while those of B. bassiana and P. farinosus readily hydrolyzed peptides with valine and arginine, as well as proline and tyrosine in the P2 and P1 positions, respectively. The hydrolyzing capacities of M. anisopliae peptidases were similar to A. astaci, but showed lower specific activities. Casein or azocoll was only hydrolyzed by A. astaci peptidases. B. bassiana and M. anisopliae had a very low hydrolyzing capacity toward casein and could not degrade azocoll. P. farinosus had no hydrolyzing activity toward casein or azocoll. Only peptidases from the crayfish pathogen A. astaci could degrade the crayfish cuticle. The peptidase preparations of A. astaci and B. bassiana hydrolyzing MeO-Suc-Arg-Pro-Tyr-pNA or Bz-Phe-Val-Arg-pNA were of the serine type. The possible importance of peptidase activity of arthropod pathogenic fungi in the infection process is discussed.  相似文献   
2.
The aqueous extract of dried bonito (Katsuobushi) was distilled under reduced pressure. The resulting distillate with diethyl ether and the extract was separated into acidic, phenolic, basic and neutral fractions. The neutral fraction was further fractionated into ten sub-fractions by silica gel column chromatography. All these sub-fractions were analyzed by gas chromatography and gas chromatography-mass spectrometry.

One hundred and sixty-five compounds were identified and 12 compounds were tentatively identified from the neutral fraction. Among them, 111 compounds were newly identified as flavor components of Katsuobushi.  相似文献   
3.
Three hundred and fifty‐nine isolates of actinobacteria collected from different Moroccan soils were evaluated for their in vitro antimicrobial activity against the oomycete pathogen Aphanomyces euteiches, the causal agent of damping‐off of pea and other legumes. Eighty‐seven isolates (24%) had an inhibitory in vitro effect against A. euteiches. Fourteen bioactive isolates with the greatest inhibitory effect against A. euteiches and no inhibitory effect on plant beneficial rhizobia were tested for their ability to protect pea seeds and seedlings against the damping‐off disease using culture supernatants or spore suspensions as treatments. The two most protective isolates, OB21 and BA15, significantly reduced, compared to untreated control plants, damping‐off by 33% and 47%, respectively. The two bioactive isolates were classified as species of the genus Streptomyces based on 16S rDNA analysis and morphological and chemical characteristics.  相似文献   
4.
The legume root rot disease caused by the oomycete pathogen Aphanomyces euteiches is one major yield reducing factor in legume crop production. A comparative proteomic approach was carried out in order to identify proteins of the model legume Medicago truncatula which are regulated after an infection with A. euteiches. Several proteins were identified by two dimensional gel electrophoresis to be differentially expressed after pathogen challenge. Densitometric evaluation of expression values showed different regulation during the time-course analysed. Proteins regulated during the infection were identified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Among the differentially expressed proteins, two encoded putative cell wall proteins and two were designated as small heat shock proteins. Furthermore, an isoform of the chalcone-O-methyltransferase was found to be increased in infected roots. The majority of induced proteins belonged to the family of class 10 of pathogenesis related proteins (PR10). Previously, various PR10-like proteins have been shown to be regulated by general stress or abscisic acid (ABA). Therefore, these proteins were further investigated concerning their regulation in response to drought stress and exogenous ABA-application. Complex regulation patterns were identified: three of the A. euteiches-induced PR10-like proteins were also induced by exogenous ABA- but none of them is induced after drought stress. In contrast, three of these proteins are down-regulated by drought stress. Hence, the strong expression of different PR10-family members and their regulation profiles indicates that this set of proteins plays a major role during root adaptations to various stress conditions.  相似文献   
5.
The oomycete Aphanomyces astaci causes mass mortalities of European crayfish. Different species of North American crayfish, original hosts of this parasite, seem to carry different strains of A. astaci. So far, four distinct genotype groups have been recognised using Random Amplification of Polymorphic DNA (RAPD-PCR). We succeeded in isolating A. astaci from the spiny-cheek crayfish Orconectes limosus, a widespread invader in Europe, and confirmed that this species carries a novel A. astaci genotype. Improving knowledge on the diversity of this parasite may facilitate identification of genotypes in mass mortalities of European crayfish, thus tracing the sources of infection.  相似文献   
6.
Nitrogen (N) availability can impact plant resistance to pathogens by the regulation of plant immunity. To better understand the links between N nutrition and plant defence, we analysed the impact of N availability on Medicago truncatula resistance to the root pathogen Aphanomyces euteiches. This oomycete is considered to be the most limiting factor for legume production. Ten plant genotypes were tested in vitro for their resistance to A. euteiches in either complete or nitrate‐deficient medium. N deficiency led to enhanced or reduced susceptibility depending on the plant genotype. Focusing on four genotypes displaying contrasting responses, we determined the impact of N deficiency on plant growth and shoot N concentration, and performed expression analyses on N‐ and defence‐related genes, as well as the quantification of soluble phenolics and different amino acids in roots. Our analyses suggest that N modulation of plant resistance is not linked to plant response to N deprivation or to mechanisms previously identified to be involved in plant resistance. Furthermore, our studies highlight a role of glutamine in mediating the susceptibility to A. euteiches in M. truncatula.  相似文献   
7.
Aphanomyces frigidophilus sp. nov. was obtained from eggs of Japanese char,Salvelinus leucomaenis, from Tochigi Prefectural Fisheries Experimental Station, Utsunomiya, Japan. Vegetative hyphae were delicate, slightly wavy, moderately branched. Zoosporangia were isodiametric with the vegetative hyphae. Oogonia were abundant, originating on short stalks from lateral sides of hyphae. Oogonia were spherical, subspherical or pyriform, with a single subcentric oospore inside. Outer surfaces of oogonia were roughened with short papillate, crenulate or irregular ornaments. Antheridia and oospore germination were not observed. Zoospore germination and vegetative growth were found from pH 5.0 to 11.0. Zoospore production was highest at 10°C, whereas rapid growth occurred at 20–25°C. Vegetative growth of the fungus declined from the maximal level at 25°C to less than half maximal at 30°C and completely disappeared at 35°C.  相似文献   
8.
北京地区水霉科真菌季节性分布   总被引:1,自引:0,他引:1  
本文报道北京地区水霉科(Saprolegniaceae)真菌季节性分布的调查、研究结果,发现影响水霉季节性分布的主要因素是水温的季节性变化。不同属、种具不同的季节性分布,而种的季节性分布与它们卵孢子的结构有关。  相似文献   
9.
The effects of dietary glutathione (GSH) on plasma and liver lipid concentrations were investigated with rats fed on a high cholesterol diet. When graded levels of GSH, 0.75 to 5.0%, were added to the 25% casein basal diet, the plasma total cholesterol level was significantly decreased and the HDL-cholesterol level was inversely increased in all addition levels without influence on the growth of animals except for the 5% addition level; the dietary addition of 5% GSH markedly depressed the growth and food consumption of rats and caused a slight diarrhea. Plasma triglyceride and phospholipid levels were decreased by the dietary addition of GSH. The contents of cholesterol and triglyceride in the liver were decreased as the dietary addition level of GSH was increased. The dietary addition of a mixture of glutamic acid, cysteine and glycine, or cysteine alone corresponding to 2.5% GSH resulted in a cholesterol-lowering effect which could not be distinguished from the effect of GSH in rats fed on the 25% casein diet. When 1.5% GSH was added to a low (10%) casein diet, the plasma cholesterol-lowering effect of GSH was also observed and the effect was comparable to that of cysteine. These results indicate that dietary-added GSH has a plasma and liver cholesterol-lowering efficacy and that this effect is largely attributable to the cysteine residue of GSH rather than to the tripeptide itself or the other amino acid residues.  相似文献   
10.

Background and Aims

The oomycete Aphanomyces euteiches causes up to 80 % crop loss in pea (Pisum sativum). Aphanomyces euteiches invades the root system leading to a complete arrest of root growth and ultimately to plant death. To date, disease control measures are limited to crop rotation and no resistant pea lines are available. The present study aims to get a deeper understanding of the early oomycete–plant interaction at the tissue and cellular levels.

Methods

Here, the process of root infection by A. euteiches on pea is investigated using flow cytometry and microscopic techniques. Dynamic changes in secondary metabolism are analysed with high-performance liquid chromatography with diode-array detection.

Key Results

Root infection is initiated in the elongation zone but not in the root cap and border cells. Border-cell production is significantly enhanced in response to root inoculation with changes in their size and morphology. The stimulatory effect of A. euteiches on border-cell production is dependent on the number of oospores inoculated. Interestingly, border cells respond to pathogen challenge by increasing the synthesis of the phytoalexin pisatin.

Conclusions

Distinctive responses to A. euteiches inoculation occur at the root tissue level. The findings suggest that root border cells in pea are involved in local defence of the root tip against A. euteiches. Root border cells constitute a convenient quantitative model to measure the molecular and cellular basis of plant–microbe interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号