首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   3篇
  2013年   7篇
  2012年   1篇
  2011年   11篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   8篇
  2005年   3篇
  2004年   5篇
  2002年   5篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1988年   1篇
  1985年   2篇
  1983年   3篇
  1982年   1篇
排序方式: 共有67条查询结果,搜索用时 390 毫秒
1.
Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, inhibits pro-inflammatory cascade, etc. Ghrelin and its receptor (GHS-R1a) mRNA were found in the area related to the regions for controlling pain transmission, such as the hypothalamus, the midbrain, the spinal cord, etc. Ghrelin has been shown to have antinociceptive activity and also anti-inflammatory properties in inflammatory pain and chronic neuropathic pain. Therefore, the aim of the present study was to investigate the effects of ghrelin for the first time in the acute pain modulation at the supraspinal level, using the tail withdrawal test and hot-plate test in mice. Intracerebroventricular (i.c.v.) administration of ghrelin (mouse, 0.1–3 nmol) produced a dose- and time-related antinociceptive effect in the tail withdrawal test and hot-plate test, respectively. Antinociceptive effect elicited by ghrelin (i.c.v., 1 nmol) was significantly antagonized by opioid receptor antagonist naloxone (i.c.v., 10 nmol co-injection or i.p., 10 mg/kg, 10 min prior to ghrelin) in both tail withdrawal test and hot-plate test. At these doses, naloxone significantly antagonized the antinociceptive effect induced by morphine (i.c.v., 3 nmol). Ghrelin (i.c.v., 1 nmol)-induced antinociception was significantly antagonized by co-injection with 10 nmol [d-Lys3]-GHRP-6, the selective antagonist of GHS-R1a identified more recently, while [d-Lys3]-GHRP-6 (10 nmol) alone induced neither hyperalgesia nor antinociception. Overall this data indicate that ghrelin could produce antinociception through an interaction with GHS-R1a and with the central opioid system. Thus ghrelin may be a promising peptide for developing new analgesic drugs.  相似文献   
2.
Intrathecal (IT) injection of arginine vasopressin (AVP) in rats caused a transient (<30 min), dose-related paralysis of the hindlimbs, loss of hindlimb and tail nociceptive responsiveness, and increased mean arterial pressure. Motor dysfunction was produced with comparable potency by lysine vasopressin (LVP) and arginine vasotocin (AVT); oxytocin (OXY) was approximately 1000 times less potent. Paralysis induced by these peptides was selectively blocked following IT pretreatment with 0.5 nmoles of the vasopressin V1 receptor antagonist [1-(β-mercapto-β,β-cyclopentamethylene propioinic acid), 2-(O-methyl)tyrosine] Arg8-vasopressin (d(CH2)5[Tyr(Me2)]AVP). Pressor and antinociceptive responses to AVP were also blocked by this compound. However, at higher doses (2–5 nmoles, IT), d(CH2)5[Tyr(Me2)]AVP produced hindlimb paralysis, antinociception, and pressor responses by itself. In contrast to the fiber degeneration, cell loss, and necrosis found in lumbosacral cords of rats persistently paralyzed by other peptides (dynorphin A, somatostatin, and ICI 174864), neuropathological changes were not evident in spinal cords of rats transiently paralyzed by IT AVP. These results indicate that AVP-related peptides affected diverse spinal cord functions through interactions with a V1-like receptor. The similar pattern of cardiovascular and antinociceptive responses to other peptides (dynorphin A, somatostatin, and ICI 174864), which also caused hindlimb paralysis, suggests that the former responses may actually reflect the nonselective consequences of a peptide-induced disruption of spinal cord function, rather than specific shared pharmacological effects.  相似文献   
3.
Kwon YB  Lee HJ  Han HJ  Mar WC  Kang SK  Yoon OB  Beitz AJ  Lee JH 《Life sciences》2002,71(2):191-204
We recently demonstrated that bee venom (BV) injection into the Zusanli acupoint produced a significantly more potent anti-inflammatory and antinociceptive effect than injection into a non-acupoint in a Freund's adjuvant induced rheumatoid arthritis (RA) model. However, the precise BV constituents responsible for these antinociceptive and/or anti-inflammatory effects are not fully understood. In order to investigate the possible role of the soluble fraction of BV in producing the anti-arthritic actions of BV acupuncture, whole BV was extracted into two fractions according to solubility (a water soluble fraction, BVA and an ethylacetate soluble fraction, BVE) and the BVA fraction was further tested.Subcutaneous BVA injection (0.9 mg/kg/day) into the Zusanli acupoint was found to dramatically inhibit paw edema and radiological change (i.e. new bone proliferation and soft tissue swelling) caused by Freund's adjuvant injection. BVA treatment also reduced the increase in serum interleukin-6 caused by RA induction to levels observed in non-arthritic animals. In addition, BVA therapy significantly reduced arthritis-induced nociceptive behaviors (i.e. nociceptive scores for mechanical hyperalgesia and thermal hyperalgesia). Finally, BVA treatment significantly suppressed adjuvant-induced Fos expression in the lumbar spinal cord at 3 weeks post-adjuvant injection. In contrast, BVE treatment (0.05 mg/kg/day) failed to show any anti-inflammatory or antinociceptive effects on RA.The results of the present study demonstrate that BVA is the effective fraction of whole BV responsible for the antinociception and anti-inflammatory effects of BV acupuncture treatment. Thus it is recommended that this fraction of BV be used for long-term treatment of RA-induced pain and inflammation. However, further study is necessary to clarify which constituents of the BVA fraction are directly responsible for these anti-arthritis effects.  相似文献   
4.
Antinociceptive activity of a novel buprenorphine analogue   总被引:2,自引:0,他引:2  
HS-599 is a didehydroderivative of buprenorphine that displays high affinity and good selectivity for mu-opioid receptors. We studied its antinociceptive properties after s.c. injection in mice with the tail-flick and hot-plate tests. In the tail-flick test HS-599 (AD50 = 0.2801 micromol/kg s.c.) behaved as a full agonist and was twice as potent as buprenorphine (AD50=0.4569 micromol/kg s.c.) and 50 times more potent than morphine (AD50 = 13.3012 micromol/kg s.c.). Whereas the mu-opioid receptor antagonists naloxone (1-10 mg/kg s.c.) and naltrexone (5-15 mg/kg s.c.) antagonized HS-599 induced analgesia, the delta-opioid receptor antagonist naltrindole (20 mg/kg s.c.) and the kappa-opioid receptor antagonist nor-binaltorphimine (20 mg/kg s.c.) did not. With the hot-plate test at 50 degrees C, HS-599 (AD50 = 0.0359 micromol/kg s.c.) was a full agonist about 130 times more potent than morphine (AD50 = 4.8553 micromol/kg s.c.). With a high intensity nociceptive stimulus (55 degrees C) HS-599 (AD50 = 1.0382 micromol/kg s.c.) remained 7 times more potent than morphine (AD50 = 7.0210 micromol/kg s.c.) but never exceeded the 55% of the maximum possible effect, behaving as a partial agonist able to antagonize morphine antinociception in a dose-dependent manner. HS-599 promises to be a potent and safe new analgesic, preferentially acting at spinal level.  相似文献   
5.
We synthesized symmetrical and nonsymmetrical triplet drugs with 1,3,5-trioxazatriquinane skeletons. The isolation of key intermediates, oxazoline dimers, made it possible to effectively produce nonsymmetrical triplets. Among the synthesized triplets, KNT-93, composed of three identical opioid μ receptor agonists, showed dose-dependent antinociception via the μ receptor. The effect was 56-fold more potent than that of morphine, a representative μ agonist. The profound analgesic effect induced by KNT-93 might result from simultaneous occupation of three μ opioid receptors.  相似文献   
6.
Injection of capsaicin into the hindpaw has been employed as a model of chemogenic nociception in mice. Intraplantar injection of nociceptin (30–240 pmol) produced a significant and dose-dependent antinociceptive activity in the capsaicin test. The nociceptin N-terminal fragments, (1–11) and (1–13), were also active with a potency higher than nociceptin and comparable to nociceptin, respectively. Intraplantar injection of the nociceptin (1–7) fragment had no effect on capsaicin-induced nociception. Antinociception induced by nociceptin or nociceptin (1–13) was reversed significantly by intraplantar co-injection of [Nphe1]nociceptin (1–13)NH2, an orphan opioid receptor-like 1 (ORL1) receptor antagonist, whereas local injection of the antagonist did not interfere with the action of nociceptin (1–11). Nociceptin (1–11) was approximately 2.0-fold more potent than naturally occurring peptide nociceptin, and 10-fold more active than intraplantar morphine. Nociceptive licking/biting response to intraplantar injection of capsaicin was desensitized by repeated injections of capsaicin at the interval of 15 min. Desensitization induced by capsaicin was attenuated significantly by co-injection of nociceptin at much lower doses than antinociceptive ED50 for nociceptin. Capsaicin desensitization was also decreased by co-injection of nociceptin (1–11) and (1–13) to a similar extent. The present results indicate that not only nociceptin but also the N-terminal fragment (1–13) possesses a local peripheral antinociceptive action, which may be mediated by peripheral ORL1 receptors. In addition, the difference of the effective doses suggests that the antinociceptive action and inhibition of capsaicin-induced desenitization by nociceptin, nociceptin (1–11) and (1–13), may involve distinct mechanisms at the level of the peripheral nerve terminal.  相似文献   
7.
Natural products including those derived from plants, have over the years greatly contributed to the development of therapeutic drugs. Polygodial and drimanial are sesquiterpenes isolated from the bark of the plant Drymis Winteri (Winteraceae) that exhibit antinociceptive properties. Since peripheral glutamate presents nociceptive actions, in this study it was investigated the effects of hydroalcooholic extracts from Drymis winteri (polygodial and drimanial) on the glutamatergic system in rat brain. Polygodial and drimanial inhibited glutamate uptake by astrocytes, as well as by cortical, hippocampal and striatal slices, and increased synaptosomal glutamate release. These concurrent effects would predispose to an increase in the extracellular glutamate concentrations, leading to possible neurotoxic effects (excitotoxicity) of these natural compounds, which would suggest the need for some caution in their therapeutic application.  相似文献   
8.
The effects of α,β-amyrin, a pentacyclic triterpene isolated from Protium heptaphylum was investigated on rat model of orofacial pain induced by formalin or capsaicin. Rats were pretreated with α,β-amyrin (10, 30, and 100 mg/kg, i.p.), morphine (5 mg/kg, s.c.) or vehicle (3% Tween 80), before formalin (20 μl, 1.5%) or capsaicin (20 μl, 1.5 μg) injection into the right vibrissa. In vehicle-treated controls, formalin induced a biphasic nociceptive face-rubbing behavioral response with an early first phase (0–5 min) and a late second phase (10–20 min) appearance, whereas capsaicin produced an immediate face-rubbing (grooming) behavior that was maximal at 10–20 min. Treatment with α,β-amyrin or morphine significantly inhibited the face-rubbing response in both test models. While morphine produced significant antinociception in both phases of formalin test, α,β-amyrin inhibited only the second phase response, more prominently at 30 mg/kg, in a naloxone-sensitive manner. In contrast, α,β-amyrin produced much greater antinociceptive effect at 100 mg/kg in the capsaicin test, which was also naloxone-sensitive. These results provide first time evidence to show that α,β-amyrin attenuates orofacial pain atleast, in part, through a peripheral opioid mechanism but warrants further detailed study for its utility in painful orofacial pathologies.  相似文献   
9.
Huang C  Huang ZQ  Hu ZP  Jiang SZ  Li HT  Han JS  Wan Y 《Neurochemical research》2008,33(10):2107-2111
We have previously shown that electroacupuncture (EA) produced antinociception through the release of endogenous opioid peptides to activate opioid receptors during acute nociception. EA produced tolerance after its prolonged application. It has reported that 100 Hz EA could reduce mechanical hyperalgesia in complete Freund’s adjuvant (CFA)-induced inflammatory nociception rats. The present study aims to investigate the antinociceptive effect of EA and the development of EA tolerance in chronic inflammatory nociception rats with CFA injection into the hind paw plantar. The results showed that the antinociceptive effect of 100 Hz EA was significantly enhanced in CFA-induced inflammatory nociception rats. Naloxone at 20 mg/kg could significantly block this antinociceptive effect. Chronic tolerance to EA was developed faster in CFA-induced inflammatory nociception rats than in normal rats. Therefore, 100 Hz EA could enhance antinociceptive effects and accelerate tolerance development in CFA-induced inflammatory nociception rats. The enhancement of EA antinociceptive effect in CFA-induced inflammatory nociception rats might involve the endogenous opioid peptides such as dynorphin. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   
10.
Clamping the neck followed by body inversion to a supine position in mice elicits an immobility response called immobility by clamping the neck (ICN). The noxious pinch to the scruff of the neck produces antinociception in "phasic pain" models (e.g. tail-flick test). Here, a "tonic pain" model was used to test the antinociception associated with the ICN, and naloxone was used to determine the role of opioids in such antinociception. Mice were injected intraperitoneally with 0.3 mL of 0.4% acetic acid to produce writhing responses that were measured for one hour. ICN was induced every five minutes for one hour. Naloxone (5 mg/kg ip) was injected 10 min before acetic acid administration. There was a control group, sham clamping (SCLA). These mice were handled and restricted every five minutes as in the ICN but without real clamping. The repetitive inductions of ICN were able to reduce the writhing behavior; this antinociception was blocked by the naloxone pretreatment. In the SCLA group antinociception was not observed. These findings indicate that as in the "phasic pain" model, ICN also was able to elicit antinociception in this "tonic pain" model, and such antinociception seems to be mediated by opioids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号