首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2020年   2篇
  2019年   1篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2001年   1篇
  1976年   2篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
Cinnamic acids and quinolines are known as useful scaffolds in the discovery of antitumor agents. Therefore, N-cinnamoylated analogues of chloroquine, recently reported as potent dual-action antimalarials, were evaluated against three different cancer cell lines: MKN-28, Caco-2, and MCF-7. All compounds display anti-proliferative activity in the micromolar range against the three cell lines tested, and most of them were more active than their parent drug, chloroquine, against all cell lines tested. Hence, N-cinnamoyl-chloroquine analogues are a good start towards development of affordable antitumor leads.  相似文献   
2.
Drug resistance is a major challenge in antimalarial chemotherapy. In addition, a complete cure of malaria requires intervention at various stages in the development of the parasite within the host. There are only a few antimalarials that target the liver stage of the Plasmodium species which is an essential part of the life cycle of the malarial parasite. We report a series of antimalarial 3,5-bis(benzylidene)-4-piperidones and related N-acyl analogs 15, a number of which exhibit potent in vitro growth-inhibiting properties towards drug-sensitive D6 and drug-resistant C235 strains of Plasmodium falciparum as well as inhibiting the liver stage development of the malarial life cycle. The compounds 2b (IC50: 165 ng/mL), 3b (IC50: 186 ng/mL), 5c (IC50: 159 ng/mL) and 5d (IC50: 93.5 ng/mL) emerged as lead molecules that inhibit liver stage Plasmodium berghei and are significantly more potent than chloroquine (IC50: >2000 ng/mL) and mefloquine (IC50: >2000 ng/mL) in this screen. All the compounds that showed potent inhibitory activity against the P. berghei liver stage were nontoxic to human HepG2 liver cells (IC50: >2000 ng/mL). The compounds 5a and 5b exhibit comparable metabolic stability as chloroquine and mefloquine in human plasma and the most potent compound 5d demonstrated suitable permeability characteristics using the MDCK monolayer. These results emphasize the value of 3,5-bis(benzylidene)-4-piperidones as novel antimalarials for further drug development.  相似文献   
3.
The study was undertaken to evaluate the effect of prior treatment of rats with the antimalarial drugs amodiaquine (AQ) mefloquine (MQ) and halofantrine (HF) on rat liver microsomal lipid peroxidation in the presence of 1 mM FeSO4, 1 mM ascorbate and 0.2 mM H2O2 (oxidants). Ingestion of -tocopheral, a radical chain-breaking antioxidant was also included to assess the role of antioxidants in the drug treatment. In the presence of oxidants AQ, MQ and HF elicited 288%, 175% and 225% increases in malondialdehyde (MDA) formation while the drugs induced 125%, 63% and 31% increases in the absence of oxidants respectively. Similarly, AQ, MQ and HF induced lipid hydroperoxide formation by 380%, 256%, 360% respectively in the presence of oxidants and 172%, 136% and 92% in the absence of exogenously added oxidants respectively. -tocopherol reduced AQ, MQ and HF-induced MDA formation by 40%, 55% and 52% respectively and lipid hydroperoxide formation by 53%, 59% and 54% respectively. Similarly, -tocopherol attenuated the AQ, MQ and HF-induced MDA formation by 49%, 51% and 51% in the presence of oxidants and lipid hydroperoxide formation by 61%, 62% and 47% respectively. The results indicate that rat liver microsomal lipid peroxidation could be enhanced by antimalarial drugs in the presence of reactive oxygen species and this effect could be ameliorated by treatment with antioxidants.  相似文献   
4.
Strains of Plasmodium berghei resistant to clindamycin or minocycline were selected by a procedure in which groups of infected mice were treated with increasing doses of drug during each of a series of subpassages. Groups of five mice, each infected by intravenous inoculation with 10 million parasitized erythrocytes, were treated orally with different doses of drug for four consecutive days beginning on the day of infection. Subpassages were routinely made by Day 7, using donor mice from the group that had been treated with the highest dose of drug that allowed for some development of parasitemia during the preceding passage. Drug doses were increased in each passage as dictated by the development of parasitemia during the previous treated passage.The rate of development of resistance to clindamycin or minocycline was much slower than to conventional antimalarials such as chloroquine, quinine, or pyrimethamine. P. berghei developed total resistance to the latter compounds in nine to 12 treated passages in mice over a period of 60 to 85 days. In contrast, development of total resistance to clindamycin required 42 treated passages over a period of 300 days. Total resistance to minocycline was not attained during 86 successive minocycline-treated passages in mice over a period of 600 days, but a sixfold increase in resistance to minocycline was observed.The clindamycin-resistant strain was normally sensitive to minocycline, chloroquine, quinine, and pyrimethamine. The strain partially resistant to minocycline was normally sensitive to clindamycin, chloroquine, quinine, and pyrimethamine. Resistance to clindamycin was stable during 51 drug-free passages in mice over a period of 1 year. Resistance to minocycline was unstable. During 16 drug-free passages in mice the strain reverted towards normal sensitivity to minocycline. Strains resistant to clindamycin or minocycline showed no difference in rate of development in mice as compared to the parent strain. Likewise, only minor morphological modifications were seen in Giemsa-stained blood smears between the two resistant strains and the parent strain.These results suggest that other species of malaria may develop resistance to clindamycin or minocycline. Should resistance to one of these compounds appear, however, it should not invalidate the use of the other in the treatment of malaria.  相似文献   
5.
Sixteen triterpenoids (116), previously isolated from the aerial parts of the African medicinal plant Momordica balsamina or obtained by derivatization, were evaluated for their activity against liver stages of Plasmodium berghei, measuring the luminescence intensity in Huh-7 cells infected with a firefly luciferase-expressing P. berghei line, PbGFP-Luccon. Toxicity of compounds (116) was assessed on the same cell line through the fluorescence measurement of cell confluency. The highest activity was displayed by a derivative bearing two acetyl residues, karavoate B (7), which led to a dose-dependent decrease in the P. berghei infection rate, exhibiting a very significant activity at the lowest concentration employed (1 μM) and no toxicity towards the Huh-7 cells. It is noteworthy that, in previous studies, this compound was found to be a strong inhibitor of blood-stages of Plasmodium falciparum, thus displaying a dual-stage antimalarial activity.  相似文献   
6.
Proton nuclear magnetic resonance relaxation times were measured for the protons of micelles formed by the detergents sodium dodecyl sulfate, dodecyltrimethyl ammonium bromide, and polyethylene glycol sorbitan monolaureate in the presence of ferriprotoporphyrin IX and the antimalarial drugs chloroquine, 7-chloro-4-quinolyl 4-N,N-diethylaminobutyl sulfide, and primaquine. Diffusion coefficients were extracted from pulsed gradient NMR experiments to evaluate the degree of association of these drugs with the detergent micelles. Results indicate that at low or neutral pH when the quinolyl N is protonated, chloroquine does not associate with neutral or cationic detergent micelles. For this reason, chloroquine’s interaction with heme perturbs the partitioning of heme between the aqueous medium and detergent micelles.  相似文献   
7.
Falcipains (FPs), cysteine proteases in the malarial parasite, are emerging as the promising antimalarial drug targets. In order to identify novel FP inhibitors, we generated a pharmacophore derived from the reported co-crystal structures of inhibitors of Plasmodium falciparum Falcipain-3 to screen the ZINC library. Further, the filters were applied for dock score, drug-like characters, and clustering of similar structures. Sixteen molecules were purchased and subject to in vitro enzyme (FP-2 and FP-3) inhibition assays. Two compounds showed in vitro inhibition of FP-2 and FP-3 at low µM concentration. The selectivity of the inhibitors can be explained based on the predicted interactions of the molecule in the active site. Further, the inhibitors were evaluated in a functional assay and were found to induce morphological changes in line with their mode of action arresting Plasmodium development. Compound 15 was most potent inhibitor identified in this study.  相似文献   
8.
Nitric oxide (NO) and NO-derived reactive nitrogen species (RNS) are present in the food vacuole (FV) of Plasmodium falciparum trophozoites. The product of PFL1555w, a putative cytochrome b5, localizes in the FV membrane, similar to what was previously observed for the product of PF13_0353, a putative cytochrome b5 reductase. These two gene products may contribute to NO generation by denitrification chemistry from nitrate and/or nitrite present in the erythrocyte cytosol. The possible coordination of NO to heme species present in the food vacuole was probed by resonance Raman spectroscopy. The spectroscopic data revealed that in situ generated NO interacts with heme inside the intact FVs to form ferrous heme nitrosyl complexes that influence intra-vacuolar heme solubility. The formation of heme nitrosyl complexes within the FV is a previously unrecognized factor that could affect the equilibrium between soluble and crystallized heme within the FV in vivo.  相似文献   
9.
Intraerythrocytic Plasmodium produces large amounts of toxic heme during the digestion of hemoglobin, a parasite specific pathway. Heme is then partially biocristallized into hemozoin and mostly detoxified by reduced glutathione. We proposed an in vitro micro assay to test the ability of drugs to inhibit heme-glutathione dependent degradation. As glutathione and o-phthalaldehyde form a fluorescent adduct, we followed the extinction of the fluorescent signal when heme was added with or without antimalarial compounds. In this assay, 50 microM of amodiaquine, arthemether, chloroquine, methylene blue, mefloquine and quinine inhibited the interaction between glutathione (50 microM) and heme (50 microM), while atovaquone did not. Consequently, this test could detect drugs that can inhibit heme-GSH degradation in a fast, simple and specific way, making it suitable for high throughput screening of potential antimalarials.  相似文献   
10.
Chloroquine given parenterally to mice infected with Plasmodium berghei induces clumping of malarial pigment in intraerythrocytic parasites, as viewed by light microscopy. Quinine and candidate antimalarials WR 33,063, WR 171,669, WR 30,090, and WR 142,490 were singly tested for their ability to influence this clumping process if administered by gavage either before or after chloroquine. Phase constrast and electron microscopical studies showed that these agents not only can inhibit pigment clumping induced by chloroquine when given before chloroquine but can also reverse this process when given afterwards. Such reversal may be effected even if these agents are given at a time after chloroquine when hemozoin configuration consists exclusively of clumps.Electron microscopy on chloroquine-induced pigment clumping reversal by WR 30,090 and WR 33,063 provided evidence that this process, i.e., malarial pigment disaggregation, as seen by light microscopy may result from vesiculation of the postchloroquine enlarged food vacuole containing an aggregate of pigment particles and a pinching off therefrom of vesicles containing individual pigment particles, with a resultant scattering of these throughout the parasite cytoplasm.These studies demonstrate that an antimalarial's in vivo chloroquine-induced pigment dumping-inhibiting and reversing properties can serve as indicators of its oral bioavailability. Therefore, it is proposed that these properties should find application in a bioassay (preclinical primary screen) designed to evaluate the relative oral bioavailability of various physical dosage forms of any candidate antimalarial possessing such properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号