首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Rho-associated coiled coil-formed protein kinase (ROCK) inhibitors are under development as a new class of antiglaucoma agents. Based on the potent ROCK inhibitor H-1152, previously developed by us, we explored the possibility of related compounds as antiglaucoma agents and synthesized seven types of H-1152-inspired isoquinoline-5-sulfonamide compounds (H-0103–H-0107, H-1001, H-1005). Although all of these compounds potently inhibited ROCK (IC50 = 18–48 nM), only H-0104 and H-0106 exerted strong intraocular pressure (IOP)-lowering effects into the eyes of monkeys. These results suggested the possibility that there is no direct relationship between ROCK inhibition and IOP-lowering effects, indicating that the initial screening of compounds based on ROCK inhibitory activity may be an unsuitable strategy for developing antiglaucoma agents with potent IOP-lowering effects.  相似文献   
2.
Abstract

Reaction of 2-nitrophenyl-and 4-nitrophenylsulfenyl chlorides with aromatic/heterocyclic sulfonamides/bis-sulfonamides containing a free amino, hydrazino or imino group afforded sulfenamido-sulfonamides, or sulfenimido-sulfonamides. Oxidation of these derivatives with potassium permanganate in acetone led to the corresponding bis-sulfonamides. The obtained compounds were assayed as inhibitors of the zinc enzyme carbonic anhydrase (CA), isozymes hCAI, hCAII (human cytosolic forms from red cells) and bCAIV (bovine membrane-associated form). Good inhibition of the three CA isozymes was observed with some of the new compounds, the bis-sulfonamides being more active than the sulfenamido-sulfonamides. Structure-active correlations for the new series of inhibitors are discussed. Some of the sulfenamido-sulfonamides (but not the corresponding bis-sulfonamides) showed topical intraocular pressure lowering effects when applied as a 2% solution directly into the rabbit eye.  相似文献   
3.
Carbonic anhydrase inhibitors (CAIs) are a class of pharmaceuticals used as antiglaucoma agents, diuretics, antiepileptics, in the management of mountain sickness, gastric and duodenal ulcers, neurological disorders or osteoporosis. We report here the inhibitory capacities of some phenolic compounds against three human CA isozymes (hCA I, hCA II, and hCA VI) and the gill carbonic anhydrase of the teleost fish Dicentrarchus labrax (European seabass) (dCA). The isozymes showed quite diverse inhibition profiles with these compounds. These data may lead to design novel CAIs with a diverse inhibition mechanism compared to sulfonamide/sulfamate inhibitors.  相似文献   
4.
A series of novel N,N′′-diaryl cyanoguanidines were synthesized by reacting diphenyl N-cyanocarbonimidate with sulfanilamide followed by treatment of the obtained cyano-O-phenylisourea with substituted aromatic amines. The newly prepared N,N′′-diaryl cyanoguanidines showed a very interesting inhibition profile against four selected human carbonic anhydrase (CA, EC 4.2.1.1) isoforms, hCA I and hCA II (cytosolic), hCA IV (membrane-bound), and hCA IX (transmembrane). All these compounds showed a potent inhibition against isoform hCA II,with inhibition constants in the low nanomolar range, as well as a high selectivity for hCA II over hCA I, IV and IX. Since hCA II is an important drug target for antiglaucoma agents, these isoform-selective inhibitors may be considered of interest for further medicinal/pharmacologic studies.  相似文献   
5.
Metal complexes of a sulfonamide possessing strong carbonic anhydrase (CA) inhibitory properties, 5-(2-chlorophenyl)-1, 3, 4-thiadiazole-2-sulfonamide (chlorazolamide) have been obtained from the sodium salt of the sulfonamide and the following metal ions: Mg(II), Zn(II), Mn(II), Cu(II), Co(II), Ni(II), Be(II), Cd(II), Pb(II), AI(III), Fe(III) and La(III). The original sulfonamide and its complexes were assayed for the in vitro inhibition of three CA isozymes, CA I, II, and IV, some of which play a critical role in ocular fluid secretion. All these compounds (the sulfonamide and its metal complexes) behaved as powerful inhibitors against the three investigated isozymes. The parent sulfonamide possessed an extremely weak topical pressure lowering effect when administered as a 1-2% suspension into the rabbit eye, but some of its metal complexes, such as the Mg(II), Zn(II), Mn(II) and Cu(II) derivatives, lower intraocular pressure (IOP) in experimental animals very well. Ex vivo data showed a 99.5-99.9% CA II inhibition in ocular fluids and tissues of rabbits treated with these agents, proving that the observed IOP lowering is due to CA inhibition. The influence of the different metal ions upon the efficiency of the obtained complexes as pressure lowering drugs are discussed, leading to the possibility of designing more selective; potent pharmacological agents from this class  相似文献   
6.
Several aromatic/heterocyclic sulfonamide scaffolds have been used to synthesize compounds incorporating NO-donating moieties of the nitrate ester type, which have been investigated for the inhibition of five physiologically relevant human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms: hCA I (offtarget), II, IV and XII (antiglaucoma targets) and IX (antitumor target). Some of the new compounds showed effective in vitro inhibition of the target isoforms involved in glaucoma, and the X-ray crystal structure of one of them revealed factors associated with the marked inhibitory activity. In an animal model of ocular hypertension, one of the new compounds was twice more effective than dorzolamide in reducing elevated intraocular pressure characteristic of this disease, anticipating their potential for the treatment of glaucoma.  相似文献   
7.
A series of 1-(3-substituted-phenyl)-5-phenyl-N3,N4-bis(5-sulfamoyl-1,3,4-thiadiazol-2-yl)-1H-pyrazole-3,4-dicarboxamides (4–15) were synthesized. The structures of these pyrazole-sulfonamides were confirmed by FT-IR, 1H NMR, 13C NMR and elemental analysis methods. Human cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes (hCA I and II) were purified from erythrocyte cells by affinity chromatography. The inhibitory effects of newly synthesized derivatives (4–15) were investigated in vitro on esterase activities of these isozymes. The Ki values were determined as 0.119–3.999 μM for hCA I and 0.084–0.878 μM for hCA II. The results showed that the compound 6 for hCA I and the compound 11 for hCA II had the highest inhibitory effect. Beside that, the compound 8 had the lowest inhibition effect on both isozymes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号