首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2006年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
The Atlantic and spotted wolffish (Anarhichas lupus and A. minor, respectively) inhabit the cold waters of the northeast Atlantic Ocean. Although both species experience subzero water temperatures during winter, the Atlantic wolffish, which occupies shallower waters than the spotted wolffish, faces the greater threat of coming into contact with ice and freezing. This laboratory study was designed to determine whether these species differed in their abilities to resist freezing by examining the seasonal changes in blood plasma freezing points, antifreeze protein (AFP) activity and Na+ and Cl concentrations when exposed to seasonally cycling water temperatures and photoperiod. The plasma of both species showed distinct seasonal cycles in all parameters with the highest values occurring during the winter. However, of the two species, only the Atlantic wolffish produced sufficient AFP to protect the fish down to the freezing point of seawater (− 1.80 °C). The levels of AFP in the spotted wolffish were too low to impart any significant improvement in their resistance to freezing (approximately − 0.8 °C).When wolffish were maintained in warm water under a seasonally changing photoperiod, the amplitude of the seasonal cycle in AFP activity was greatly reduced, indicating that low water temperatures are necessary to maximize plasma AFP levels. However, despite being maintained in warm water, plasma levels of AFP activity began to increase over summer values at the same time of year as did the fish exposed to seasonally changing water temperatures. This suggests that photoperiod plays a major role in the timing of the annual AFP cycle.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号