首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2302篇
  免费   48篇
  国内免费   174篇
  2024年   3篇
  2023年   34篇
  2022年   25篇
  2021年   43篇
  2020年   24篇
  2019年   38篇
  2018年   38篇
  2017年   37篇
  2016年   29篇
  2015年   26篇
  2014年   60篇
  2013年   117篇
  2012年   40篇
  2011年   183篇
  2010年   62篇
  2009年   149篇
  2008年   127篇
  2007年   106篇
  2006年   95篇
  2005年   106篇
  2004年   85篇
  2003年   79篇
  2002年   75篇
  2001年   59篇
  2000年   57篇
  1999年   72篇
  1998年   77篇
  1997年   63篇
  1996年   46篇
  1995年   64篇
  1994年   70篇
  1993年   66篇
  1992年   62篇
  1991年   65篇
  1990年   63篇
  1989年   31篇
  1988年   15篇
  1987年   19篇
  1986年   16篇
  1985年   19篇
  1984年   16篇
  1983年   7篇
  1982年   10篇
  1981年   12篇
  1980年   5篇
  1979年   12篇
  1978年   6篇
  1977年   5篇
  1976年   4篇
  1971年   1篇
排序方式: 共有2524条查询结果,搜索用时 15 毫秒
1.
Anaerobic rupture of the benzoic acid ring was investigated. Carbon 4 was converted primarily to carbon dioxide. Following ring rupture during methane fermentation, propanoic acid is an intermediate, and carbon 4 of benzoate becomes its carboxyl.Contribution No. 1285-j, Division of Biology, Kansas State University, Manhattan, KS 66506. This work was supported in part by funds from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506. Paper II of this series is Fina and Fiskin (1960)  相似文献   
2.
Peptides, and oligosaccharides and glycosides, can be synthesised by making use of the ‘reverse hydrolytic activity’ of proteases and glycosidases respectively. In applying these enzymes to the practical synthesis of these classes of compound, several factors need to be considered, namely the need to shift the rate-determining step through the use of activated substrates, the need to minimise competing hydrolysis of these and the need to minimise hydrolysis of the products. In spite of these problems, the enzymatic methods have many attractive features, not least amongst which is the absolute control of stereochemistry in acyl transfer and glycosyl transfer respectively.  相似文献   
3.
Nitrosation activity was measured in Escherichia coli isolates and a range of nitrite reductase (nir) mutants. Activity was only detected in intact cells and could be inhibited by a number of treatments such as sonication and osmotic shock. Aerobically-grown cells had highest nitrosation activity compared to oxygen-limited ones. Inclusion of nitrite in growth media induced high activities of nitrite reductase and for some isolates, nitrosation. Analysis of nir mutants identified two which were unable to nitrosate. This result suggested that NADH-dependent nitrite reductase was implicated either directly or indirectly in nitrosation.  相似文献   
4.
Abstract. The wood-degrading white-rot fungus Phanerochaete chrysosporium , has been the subject of intensive research in recent years and, based upon isolation of the extracellular enzyme ligninase, major advances have now been made toward elucidating the mechanism by which this fungus degrades lignin. From these developments, a model emerges which could explain the process by which wood-degrading fungi in general, attack lignin.  相似文献   
5.
Summary Soil waterlogging responses were examined in three Spartina patens populations along a steep flooding gradient in coastal Louisiana. Root anatomy and physiological indicators of anaerobic metabolism were examined to identify and compare flooding responses in dune, swale and marsh populations, while soil physicochemical factors were measured to characterize the three habitats. Soil waterlogging increased along the gradient from dune to marsh habitats and was accompanied by increases in root porosity (aerenchyma). Aerenchyma in marsh roots was apparently insufficient to provide enough oxygen for aerobic respiratory demand, as indicated by high root alcohol dehydrogenase activities and low energy charge ratios. Patterns of root metabolic indicators suggest that dune and swale roots generally respired aerobically, while anaerobic metabolism was important in marsh roots. However, in each population, relatively greater soil waterloging was accompanied by differences in enzyme activities leading to malate accumulation. In dune and swale roots under these circumstances, depressed adenylate energy charge ratios may have been the result of an absence of increased ethanol fermentation. These trends suggest that: 1) Aerenchyma formation was an important, albeit incomplete, long-term adaptation to the prevalent degree of soil waterlogging. 2) All populations adjusted root metabolism in response to a relative (short-term) increase in soil waterlogging.  相似文献   
6.
From various oxic or anoxic habitats several strains of bacteria were isolated which in the absence of molecular oxygen oxidized phenol to CO2 with nitrate as the terminal electron acceptor. All strains grew in defined mineral salts medium; two of them were further characterized. The bacteria were facultatively anaerobic Gramnegative rods; metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as electron acceptor. The isolates were tentatively identified as pseudomonads. Besides phenol many other benzene derivatives like cresols or aromatic acids were anaerobically oxidized in the presence of nitrate. While benzoate or 4-hydroxybenzoate was degraded both anaerobically and aerobically, phenol was oxidized under anaerobic conditions only. Reduced alicyclic compounds were not degraded. Preliminary evidence is presented that the first reaction in anaerobic phenol oxidation is phenol carboxylation to 4-hydroxybenzoate.  相似文献   
7.
Growth of Nitrobacter by dissimilatoric nitrate reduction   总被引:2,自引:0,他引:2  
Abstract Eight strains of the genus Nitrobacter grew under anaerobic conditions in the presence of nitrate. The growth was inhibited by nitrate concentrations above 0.5 mM. By a special culture technique inhibition caused by nitrite was abolished. Nitrate oxidizing cells grew in gas tight culture flasks as a biofilm on a gas-permeable silicone tubing. The biofilm allowed nitrate-reducing cells to grow at a low nitrite concentration. These cells grew either actively motile in the anaerobic medium, or in anaerobic zones of the biofilm. They produced nitrite and ammonia. Nitrogen balance calculations established a loss of inorganic nitrogen for 5 of 8 strains. This implies that nitrate-reducing cells produced furthermore volatile nitrogen compounds. N2O was detected by gas chromatography.  相似文献   
8.
Extracts of denitrifying bacteria grown anaerobically with phenol and nitrate catalyzed an isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate. This exchange reaction is ascribed to a novel enzyme, phenol carboxylase, initiating the anaerobic degradation of phenol by para-carboxylation to 4-hydroxybenzoate. Some properties of this enzyme were determined by studying the isotope exchange reaction. Phenol carboxylase was rapidly inactivated by oxygen; strictly anoxic conditions were essential for preserving enzyme activity. The exchange reaction specifically was catalyzed with 4-hydroxybenzoate but not with other aromatic acids. Only the carboxyl group was exchanged; [U-14C]phenol was not exchanged with the aromatic ring of 4-hydroxybenzoate. Exchange activity depended on Mn2+ and inorganic phosphate and was not inhibited by avidin. Ortho-phosphate could not be substituted by organic phosphates nor by inorganic anions; arsenate had no effect. The pH optimum was between pH 6.5–7.0. The specific activity was 100 nmol 14CO2 exchange · min-1 · mg-1 protein. Phenol grown cells contained 4-hydroxybenzoyl CoA synthetase activity (40 nmol · min-1 · mg-1 protein). The possible role of phenol carboxylase and 4-hydroxybenzoyl CoA synthetase in anaerobic phenol metabolism is discussed.  相似文献   
9.
The ability of Desulfovibrio vulgaris strain Marburg (DSM 2119) to oxidize alcohols was surveyed in the presence and absence of hydrogen-scavenging anaerobes, Acetobacterium woodii and Methanospirillum hungatei. In the presence of sulfate, D. vulgaris grew not only on ethanol, 1-propanol, and 1-butanol, but also on isobutanol, 1-pentanol, ethyleneglycol, and 1,3-propanediol. Metabolism of these alcohols was simple oxidation to the corresponding acids, except with the last two substrates: ethyleneglycol was oxidized to glycolate plus acetate, 1,3-propanediol to 3-hydroxypropionate plus acetate. Experimental evidence was obtained, suggesting that 2-methoxyethanol was not utilized by all the cells of strain marburg, but by a spontaneous mutant. 2-Methoxyethanol was oxidized to methoxyacetate by the mutant. Co-culture of strain Marburg plus A. woodii grew on ethanol, 1-propanol, 1-butanol, and 1,3-propanediol in the absence of sulfate. Co-culture of strain Marburg plus M. hungatei grew on ethanol, 1-propanol, and 1-butanol, but not on ethyleneglycol and 1,3-propanediol, Co-culture of the mutant plus A. woodii or M. hungatei did not grow on 2-methoxyethanol.  相似文献   
10.
Strain DCB-1 is a strict anaerobe capable of the reductive dechlorination of chlorobenzoates. The effect of dechlorination on the yield of pure cultures of DCB-1 was tested. Cultures were incubated with formate or H2 as electron donors and CO2 as a putative carbon source. Relative to control cultures with benzoate, cultures which dechlorinated 3-chlorobenzoate and 3,5-dichlorobenzoate had higher yields measured both as protein and cell density. On the media tested the apparent growth yield was 1.7 to 3.4 g cell protein per mole Cl- removed. Dechlorination also stimulated formate oxidation by growing cultures. Resuspended cells required an electron donor for dechlorination activity, with either formate or elemental iron serving this function. Resuspended cells did not require an electron acceptor for formate consumption, but reductive dechlorination of 3CB to benzoate stoichiometrically stimulated oxidation of formate to CO2. These results indicate that DCB-1 conserves energy for growth by coupling formate, and probably, H2 oxidation to reductive dechlorination.Non-standard abbreviations 3CB 3-chlorobenzoate - 35DCB 3,5-dichlorobenzoate - PCF Propionibacterium sp. culture fluid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号