首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4557篇
  免费   294篇
  国内免费   46篇
  2024年   5篇
  2023年   43篇
  2022年   68篇
  2021年   77篇
  2020年   103篇
  2019年   146篇
  2018年   148篇
  2017年   108篇
  2016年   104篇
  2015年   149篇
  2014年   307篇
  2013年   261篇
  2012年   233篇
  2011年   230篇
  2010年   189篇
  2009年   131篇
  2008年   136篇
  2007年   141篇
  2006年   87篇
  2005年   157篇
  2004年   178篇
  2003年   153篇
  2002年   121篇
  2001年   126篇
  2000年   92篇
  1999年   142篇
  1998年   112篇
  1997年   98篇
  1996年   105篇
  1995年   113篇
  1994年   107篇
  1993年   105篇
  1992年   99篇
  1991年   84篇
  1990年   72篇
  1989年   54篇
  1988年   56篇
  1987年   36篇
  1986年   37篇
  1985年   24篇
  1984年   35篇
  1983年   4篇
  1982年   18篇
  1981年   25篇
  1980年   20篇
  1979年   16篇
  1978年   16篇
  1977年   10篇
  1976年   10篇
  1974年   3篇
排序方式: 共有4897条查询结果,搜索用时 15 毫秒
1.
2.
Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid–liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.  相似文献   
3.
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50–200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.  相似文献   
4.
Aim It is a central issue in ecology and biogeography to understand what governs community assembly and the maintenance of biodiversity in tropical rain forest ecosystems. A key question is the relative importance of environmental species sorting (niche assembly) and dispersal limitation (dispersal assembly), which we investigate using a large dataset from diverse palm communities. Location Lowland rain forest, western Amazon River Basin, Peru. Methods We inventoried palm communities, registering all palm individuals and recording environmental conditions in 149 transects of 5 m × 500 m. We used ordination, Mantel tests and indicator species analysis (ISA) to assess compositional patterns, species responses to geographical location and environmental factors. Mantel tests were used to assess the relative importance of geographical distance (as a proxy for dispersal limitation) and environmental differences as possible drivers of dissimilarity in palm species composition. We repeated the Mantel tests for subsets of species that differ in traits of likely importance for habitat specialization and dispersal (height and range size). Results We found a strong relationship between compositional dissimilarity and environmental distance and a weaker but also significant relationship between compositional dissimilarity and geographical distance. Consistent with expectations, relationships with environmental and geographical distance were stronger for understorey species than for canopy species. Geographical distance had a higher correlation with compositional dissimilarity for small‐ranged species compared with large‐ranged species, whereas the opposite was true for environmental distance. The main environmental correlates were inundation and soil nutrient levels. Main conclusions The assembly of palm communities in the western Amazon appears to be driven primarily by species sorting according to hydrology and soil, but with dispersal limitation also playing an important role. The importance of environmental characteristics and geographical distance varies depending on plant height and geographical range size in agreement with functional predictions, increasing our confidence in the inferred assembly mechanisms.  相似文献   
5.
Phytochemical analysis of dried twigs of Marsdenia roylei (family Asclepiadaceae) has resulted in the isolation of a trisaccharide, maryal, and a diglycoside, rolinose. Their structures were determined as O-beta-D-oleandropyranosyl-(1-->4)-O-beta-D-digitoxopyranosyl++ +-(1-->4)-D- cymaral and ethyl O-beta-D-oleandropyranosyl-(1-->4)-O-3-O-methyl-6-deoxy-beta-D- allopyranoside, respectively, by chemical degradation and spectroscopic methods.  相似文献   
6.
α-Synuclein (α-syn) amyloid filaments are the major ultrastructural component of pathological inclusions that define several neurodegenerative disorders, including Parkinson disease and other disorders that are collectively termed synucleinopathies. Since the aggregation of α-syn is associated with the etiology of these diseases, defining the molecular elements that influence this process may have important therapeutics implication. The deletions of major portions of the hydrophobic region of α-syn (Δ74-79 and Δ71-82) impair the ability to form amyloid. However, mutating residue E83 to an A restored the ability of these proteins to form amyloid. Additionally supporting an inhibitory role of residue E83 on amyloid formation, mutating this residue to an A enhanced amyloid formation in the presence of small molecule inhibitors, such as dopamine and EGCG. Our data, therefore, suggest that the presence and placement of the highly charged E83 residue plays a significant inhibitory role in α-syn amyloid formation and these findings provide important insights in the planning of therapeutic agents that may be capable of preventing α-syn amyloid formation.  相似文献   
7.
8.
9.
10.
We previously found that BDNF-dependent retrograde trafficking is impaired in AD transgenic mouse neurons. Utilizing a novel microfluidic culture chamber, we demonstrate that Aβ oligomers compromise BDNF-mediated retrograde transport by impairing endosomal vesicle velocities, resulting in impaired downstream signaling driven by BDNF/TrkB, including ERK5 activation, and CREB-dependent gene regulation. Our data suggest that a key mechanism mediating the deficit involves ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that functions to regulate cellular ubiquitin. Aβ-induced deficits in BDNF trafficking and signaling are mimicked by LDN (an inhibitor of UCH-L1) and can be reversed by increasing cellular UCH-L1 levels, demonstrated here using a transducible TAT-UCH-L1 strategy. Finally, our data reveal that UCH-L1 mRNA levels are decreased in the hippocampi of AD brains. Taken together, our data implicate that UCH-L1 is important for regulating neurotrophin receptor sorting to signaling endosomes and supporting retrograde transport. Further, our results support the idea that in AD, Aβ may down-regulate UCH-L1 in the AD brain, which in turn impairs BDNF/TrkB-mediated retrograde signaling, compromising synaptic plasticity and neuronal survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号