首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2003年   2篇
  1994年   1篇
排序方式: 共有3条查询结果,搜索用时 406 毫秒
1
1.
Life History Evolution in Amphicarpic Plants   总被引:3,自引:0,他引:3  
Abstract Plants with dimorphic flowers or seeds provide excellent material for the study of life history evolution because the dimorphism often involves measurable differences in morphology, size, number, or genetic relatedness. For amphicarpic plants, the proportion of aerial: subterranean morphs produced is highly variable (from 0 to > 100) and related to both environmental and genetic factors. Plants from aerial seeds produce lower ratios of aerial: subterranean morphs than those from subterranean seeds. Despite substantial variation, subterranean seeds are generally heavier than aerial seeds (but fewer) and produce vigorous seedlings with high survivorship and high fitness. Adaptive advantages of subterranean seeds include retention of offspring in favorable parental microhabitats, protection of seeds from herbivory, predation, or fire, and avoidance of desiccating conditions on the soil surface; potential disadvantages include lack of gene exchange, high energy costs, limited dispersal, and sibling competition. For the few species studied, aerial reproduction is more plastic than subterranean reproduction and more likely to be affected by environmental conditions. Quantitative genetic analyses of a population of the annual grass Amphicarpum purshii have revealed lower heritabilites for subterranean relative to aerial reproductive traits. Subterranean seed number and mass show genetic correlations with shoot mass while aerial seed number and mass do not; seed set percentages of both seed types as well as percentage allocation to both reproductive morphs show negative genetic correlations with shoot mass. In this Amphicarpum population, directional selection on shoot mass may indirectly select for increased subterranean (but not aerial) seed output.  相似文献   
2.
Abstract The decline and range reduction of sage grouse populations are primarily due to permanent loss and degradation of sagebrush–grassland habitat. Several studies have shown that sage grouse productivity may be limited by the availability of certain preferred highly nutritious forb species that have also declined within sagebrush ecosystems of the Intermountain West, U.S.A. The purpose of this study was to determine the suitability of three species of forbs for revegetation projects where improving sage grouse habitat is a goal. Species suitability was determined by evaluating the emergence, survival, and reproduction of Crepis modocensis, C. occidentalis, and Astragalus purshii in response to method of establishment (seeding or transplanting), site preparation treatment (burned or unburned), and microsite (mound or interspace) in an Artemisia tridentata ssp. wyomingensis vegetation association in south central Oregon. For seeded plants A. purshii had the lowest emergence (8%) of all three species. Both seeded Crepis species had similar overall emergence (38%). Significantly more Crepis seedlings emerged from shrub mounds in unburned areas (50%) than in any other fire‐by‐microsite treatment (33 to 36%). Approximately 10% more Crepis seedlings survived in mounds compared with interspaces. Nearly twice as many emerging Crepis seedlings survived in the burned areas as opposed to unburned areas (p < 0.01). This resulted in more plant establishment in burned mounds despite higher emergence in unburned mounds. Astragalus purshii seedlings also survived better in burned areas (p = 0.06) but had no differential response to microsite. Fire enhanced survival of both Crepis and A. purshii transplants (p = 0.08 and p = 0.001). We believe additional research is needed to improve A. purshii emergence before it will become an effective plant for restoring sage grouse habitat. Conversely, we conclude that these Crepis species provide a viable revegetation option for improving sage grouse habitat in south central Oregon.  相似文献   
3.
Abstract Historic fire return intervals in Artemesia tridentata (big sagebrush) ecosystems have been altered by livestock grazing, fire suppression, and other land management techniques resulting in ecological changes in these areas. Increases in abundance of woody vegetation may be causing declines in native herbaceous understory species. We examined the effects of prescribed fire on the morphology, abundance, and phenology of nine abundant forb (herbaceous dicot) species used selectively by Centrocercus urophasianus (Sage Grouse). In September 1997 prescribed fire was applied to four of eight randomly assigned 400‐ha A.t. wyomingensis (Wyoming big sagebrush) study plots at Hart Mountain National Antelope Refuge, Oregon. Livestock had not grazed experimental plots since 1991. Burning caused morphological changes such as significantly greater numbers of racemes and flowers per raceme in Astragalus malachus (shaggy milkvetch‐Legumoideae) (9 in burn vs. 6 in control; 23 in burn vs. 21 in control, respectively). Also, prescribed burning caused greater numbers of flowers in Phlox gracilis (microsteris‐Polemoniaceae) (57 vs. 13), greater numbers of umbels and umbelletts in Lomatium nevadense (Nevada desert parsley‐Umbellifereae) (4 vs. 2 and 59 vs. 31, respectively), greater numbers of flower heads in Crepis modocensis (Modoc hawksbeard‐Compositae) (32 vs. 21), and greater number of flowers/cm3 in Phlox longifolia (longleaf phlox‐Polemoniaceae) (0.11 vs. 0.06). Crown volume of Crepis modocensis (7,085 vs. 4,179 cm3) and Astragalus malachus (2,854 vs. 1,761 cm3) plants was greater in burned plots than control plots. However, burning resulted in a smaller crown area of Antennaria dimorpha (low pussytoes‐Compositae) (20 vs. 37 cm2). Phenology and time of flowering were also affected by fire. The period of active growth for each species was extended later into the summer in burned plots ( p < 0.01). In addition, Crepis modocensis and Lomatium nevadense flowered 12 to 14 days earlier in burned plots. Fire had no effect on frequency, density, and relative abundance of seven of the nine studied species. Fire reduced the frequency and relative abundance of A. dimorpha and Phlox longifolia and reduced the density of A. dimorpha.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号