首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  2019年   2篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  1998年   1篇
  1982年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
The utilisation of substrates by Leishmania mexicana amastigotes and promastigotes differed significantly. The rates of uptake and catabolism of nonesterified fatty acids were up to 10-fold higher with amastigotes. Almost all the available exogenous fatty acids were consumed during amastigote transformation and by stationary phase of promastigote growth. The results suggest that fatty acids are important energy substrates for amastigotes, whereas promastigote utilisation may reflect the requirement for these substrates in anabolism. Glucose was utilised by amastigotes and promastigotes but the rate of catabolism was up to 10-fold higher in promastigotes. Uptake of glucose occurred throughout amastigote transformation and growth in vitro of promastigotes. High-subpassage promastigotes exhibited markedly lower glucose but higher amino acid utilisation than low-subpassage promastigotes. Asparagine, glutamine, glutamate, leucine, lysine, methionine, and threonine were consumed in large quantities by amastigotes and promastigotes, whereas alanine and glycine were excreted. Proline was catabolised to CO2 by amastigotes and promastigotes but only at a low rate, and it was excreted in large amounts throughout promastigote growth. The major end products of energy metabolism were found to be CO2 and succinate with both forms of the parasite and there was a secretion of up to 12 and 16% of the total protein synthesised by transforming amastigotes and growing promastigotes, respectively. Catabolism in amastigotes and promastigotes was found to be sensitive to cyanide and amytal, whereas 2-mercaptoacetate and 4-pentenoate primarily affected β-oxidation in the amastigote.  相似文献   
2.
3.
Trypanosoma cruzi is an obligate intracellular parasite that infects phagocytic and non-phagocytic mammalian cells by a complex process that appears to involve several discrete steps. Even though the infection process was described many years ago, the molecular mechanisms involved remain poorly understood. As fluorescent proteins have proven to be excellent tools for live-cell imaging, we used EGFP- and DsRed1-1-transfected trypomastigotes, amastigotes and epimastigotes to study the infection process in living cells. Contrary to what has been reported, our results showed that epimastigotes are as infective as trypomastigotes and amastigotes. Besides, differences in replication, differentiation and parasite release times were observed among the stages. Our results suggest that the different developmental stages use distinct attachment and invasion mechanisms. We propose that fluorescent-based plasmid expression systems are good models for studying the infection process of intracellular microorganisms and could offers insights about the molecular mechanisms involved.  相似文献   
4.
The isoprenoid metabolic pathway in protozoa of the Leishmania genus exhibits distinctive characteristics. These parasites, as well as other members of the Trypanosomatidae family, synthesize ergosterol, instead of cholesterol, as the main membrane sterol lipid. Leishmania has been shown to utilize leucine, instead of acetate as the main precursor for sterol biosynthesis. While mammalian dolichols are molecules containing 15-23 isoprene units, Leishmania amazonensis promastigotes synthesize dolichol of 11 and 12 units. In this paper, we show that the intracellular stages of L. amazonensis, amastigotes, synthesize mainly polyprenols of 9 isoprene units, instead of dolichol.  相似文献   
5.
Two recombinant barley cystatins, HvCPI5 and HvCPI6, have been tested in vitro against promastigotes and intracellular amastigotes of Leishmania infantum in the J774 monocytic cell line. Toxicity of cystatins for J774 cells was also determined. In addition, a comparison between direct counts of intracellular amastigotes and quantitation of burden by Q-PCR was carried out. Low concentrations (2 μM) from both cystatins were unable to inhibit promastigote replication. HvCPI5 was toxic for mammalian cells; 0.1 μM reduced by more than 50% the cell viability. On the contrary, HvCPI6 did not exhibit any toxicity for J774 cells up to 6 μM and inhibited the intracellular amastigote multiplication. Dose-response analysis showed that 4.8 μM HvCPI6 reduced by >90% the intracellular parasite load and had an approximate IC50 value of 1.5 μM. Comparable results were obtained by direct counting of intracellular amastigotes and Q-PCR. Results point towards the direct inhibition of amastigote multiplication by HvCPI6 and the interest of this recombinant cystatin in the chemotherapy of leishmaniasis.  相似文献   
6.
The Leishmania plasma membrane transporter Leishmania Iron Regulator 1 (LIR1) facilitates iron export and is required for parasite virulence. By modulating macrophage iron content, we investigated the host site where LIR1 regulates Leishmania amazonensis infectivity. In bone marrow-derived macrophages, LIR1 null mutants demonstrated a paradoxical increase in virulence during infections in heme-depleted media, while wild-type growth was inhibited under the same conditions. Loading the endocytic pathway of macrophages with cationized ferritin prior to infection reversed the effect of heme depletion on both strains. Thus, LIR1 contributes to Leishmania virulence by protecting the parasites from toxicity resulting from iron accumulation inside parasitophorous vacuoles.  相似文献   
7.
The activity of trypanothione reductase in Leishmania amazonensis was evaluated and it was demonstrated that TR is expressed in the soluble fractions of infective promastigotes and amastigotes, while non-infective promastigotes expressed the enzyme at basal levels. This data allows an association of enzyme activity and the infective capacity of the parasite. We have also previously demonstrated that amidine compounds (N, N′-diphenyl-4-methoxy-benzamidine and pentamidine) were active against this parasite. Here, experiments concerning the effect of these compounds on TR activity, showed that both compounds significantly inhibited the enzyme. However, against glutathione reductase, only pentamidine showed a significant inhibitory action, suggesting an association with the toxic effects of this drug used in the clinic for the treatment of leishmaniasis.  相似文献   
8.
A liquid medium containing a high concentration of water-soluble vitamins and ATP was developed for serial cultivation of Trypanosoma cruzi at 27–37 C; fetal bovine serum and trypticase were the only undefined substances in this medium. At 27 C, Trypanosoma cruzi grows primarily (over 99%) as epimastigotes with a population density reaching 92.7 × 106/ml after 12 days of incubation. During the first subculture at 37 C, many epimastigotes from the original inocula changed into metacyclic trypomastigotes after 48 hr; the trypomastigotes subsequently transformed into amastigotes by 96 hr. In the second passage at 48 hr, 57.8% of the organisms were trypomastigotes which changed into amastigotes by the end of the incubation period. The proportion of amastigotes in the third and subsequent passages increased steadily as the proportion of epimastigotes gradually diminished. Amastigotes thus obtained could be serially subcultured indefinitely, yielding population densities of over 3.0 × 107/ml of medium in 4–5 days at 37 C. Available evidence indicates that these amastigotes are morphologically and physiologically similar to intracellular amastigotes.  相似文献   
9.
Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans.  相似文献   
10.
S(2) complex has been reported to have a direct antileishmanial effect. The possibility that the direct antileishmanial effect may be due to inhibition of key enzymes involved in glucose metabolism and/ or enzymes associated with virulence was investigated. Cell pellets were prepared from cultures of both axenic amastigotes and promastigotes of Leishmania major (MHOM/IQ/93/MRC6) and L. tropica (MHOM/IQ/93/MRC2). S(2) complex, at various concentrations, was added to the enzyme extracts prepared from the pellets. Results show that in the Embden-Meyerhof pathway, both hexokinase and glucose-phosphate isomerase but not fructophosphokinase were dose dependently inhibited. In the hexose-monophosphate shunt both glucose-6-phosphate dehydrogenase and ribose-5-phosphate isomerase were dose dependently inhibited. Malic dehydrogenase and malic enzyme from the citric-acid cycle were both dose dependently inhibited but succinate dehydrogenase from the same pathway was not inhibited. Both enzymes associated with virulence (protease and acid phosphatase), showed activation rather than inhibition at higher doses of S(2) complex. Thus, the direct antileishmanial effect of S(2) complex may result, partially or entirely, from the inhibition of enzymes that are necessary for the parasites' carbohydrate metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号