首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   585篇
  免费   102篇
  国内免费   43篇
  730篇
  2024年   6篇
  2023年   8篇
  2022年   6篇
  2021年   9篇
  2020年   13篇
  2019年   22篇
  2018年   35篇
  2017年   27篇
  2016年   25篇
  2015年   23篇
  2014年   28篇
  2013年   27篇
  2012年   22篇
  2011年   34篇
  2010年   19篇
  2009年   41篇
  2008年   37篇
  2007年   31篇
  2006年   34篇
  2005年   33篇
  2004年   25篇
  2003年   16篇
  2002年   32篇
  2001年   19篇
  2000年   19篇
  1999年   16篇
  1998年   18篇
  1997年   3篇
  1996年   16篇
  1995年   6篇
  1994年   14篇
  1993年   6篇
  1992年   7篇
  1991年   5篇
  1990年   9篇
  1989年   5篇
  1988年   7篇
  1987年   8篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有730条查询结果,搜索用时 15 毫秒
1.
Sardinero  Santiago 《Plant Ecology》2000,148(1):81-103
An analysis of vegetation along an altitudinal gradient on the Presidential Range, New Hampshire, USA, using the Braun–Blanquet approach followed by multivariate data analysis is presented. Twelve main plant communities have been distinguished. Floristic information is presented in twelve tables and one appendix. The relationships of the communities to complex environmental gradients are analyzed using Correspondence Analysis. Floristic composition and community structure are controlled primarily by the altitudinal gradient (temperature, precipitation), and by mesotopographic conditions (snow accumulation, exposure and cryoturbation, slope position, and soil moisture).  相似文献   
2.
Species richness in the alpine zone varies dramatically when communities are compared. We explored (i) which stress and disturbance factors were highly correlated with species richness, (ii) whether the intermediate stress hypothesis (ISH) and the intermediate disturbance hypothesis (IDH) can be applied to alpine ecosystems, and (iii) whether standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone. Species numbers and standing crop were determined in 14 alpine plant communities in the Swiss Alps. To quantify the stress and disturbance factors in each community, air temperature, relative air humidity, wind speed, global radiation, UV-B radiation, length of the growing season, soil suction, pH, main soil nutrients, waterlogging, soil movement, number of avalanches, level of denudation, winter dieback, herbivory, wind damage, and days with frost were measured or observed. The present study revealed that 82% of the variance in␣vascular species richness among sites could be explained by just two abiotic factors, daily maximum temperature and soil pH. Daily maximum temperature and pH affect species richness both directly and via their effects on other environmental variables. Some stress and disturbance factors were related to species richness in a monotonic way, others in an unimodal way. Monotonic relationships suggest that the harsher the environment is, the fewer species can survive in such habitats. In cases of unimodal relationships (ISH and IDH) species richness decreases at both ends of the gradients due to the harsh environment and/or the interaction of other environmental factors. Competition and disturbance seemed only to play a secondary role in the form of fine-tuning species richness in specific communities. Thus, we concluded that neither the ISH nor the IDH can be considered useful conceptual models for the alpine zone. Furthermore, we found that standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone, even though there is no direct causality.  相似文献   
3.
Abstract. Southern Appalachian high-elevation outcrops harbour six regionally rare Northern Appalachian taxa usually considered relicts of a Pleistocene alpine flora. For five of the six taxa, minimum elevation in the south was 367–1113 m higher than in the north. While habitats compared between the two regions share only 9% of their total flora, individual plots had up to 70% of their species occurring in the opposite region. The northern affinity of southern outcrops increased with elevation, slope steepness, soil Cu, B and SO4 and decreased with potential solar radiation and soil Na. As a result, communities above 1600 m on felsic bedrock, and above 1350 m on mafic bedrock, were most northern in composition. Northern affinity of southern outcrops also increased with latitude, which may partly result from closer geographic proximity to past communities that provided progenitors for the current northern flora. Northern treeless habitats increased in southern affinity with increased slope steepness, perennial seepage, vegetation height, shade, soil pH, Al, Mn, Na and decreased elevation and organic matter. As a result, northern outcrop communities below treeline were most similar to those on southern outcrops. This suggests that southern outcrop vegetation may be more similar to Pleistocene outcrop vegetation than to Pleistocene alpine vegetation. Partial constrained ordination showed that while compositional differences between the Northern and Southern Appalachian habitats were largely explained by environmental differences, there was a significant component of residual variation explained by north or south position that was unrelated to environment. These residual compositional differences may result from historical influences on community structure involving stochastic extinction and colonization processes.  相似文献   
4.
5.
The effects of heavy resistance training and jumping exercise were examined during the 1989–1990 season in 12 international level alpine skiers. The athletes were tested before, during, immediately after training and during the period off training (June, July, October 1989, April 1990). Their mechanical behaviour was investigated using firstly squat jumps performed without (SJ) or with low extra loads (20 kg, SJ20kg) and high extra loads (equivalent to body mass on the shoulders, SJbm) and secondly 15–30 s continuous jumping. These tests allowed the assessment of explosive dynamic strength production (SJ and SJ20kg), slow dynamic strength (SJbm) and maximal mechanical power (continuous jumping). The training adopted resulted in specific changes in neuromuscular performance; in fact all the variables studied showed a significant improvement (P<0.01) from the beginning compared to the end of training. The range of improvement was between 55.4% (SJbm) and 12.5% (average power during 15-s continuous jumping). The enhancement of SJ had become significant by July. Surprisingly, even when no strength or jumping training was performed during the competition period (November-April), no deterioration in the neuromuscular performance was observed, there being no significant difference between the test values obtained in October 1989 and April 1990. It was concluded that the demanding competition programme of alpine skiers may provide a training stimulus adequate to maintain the neuromuscular improvement induced by training throughout the competition season.  相似文献   
6.
王雯颖  徐宝珠  胡佳瑶  潘高  刘文胜 《生态学报》2024,44(12):5269-5279
大叶胡枝子(Lespedeza davidii)为一种豆科灌木,具有较强耐受重金属胁迫及固氮能力,也是矿区一种重要修复植物。丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)是一类植物共生真菌,它在矿区与植物共生可促进植物生长、提高植物的抗逆性;但其种类、分布及其影响机制尚不够清楚。以大叶胡枝子灌丛土壤AMF群落为研究对象,采集矿区与非矿区大叶胡枝子冠下及其相邻空旷地土壤进行内部转录间隔区(ITS)测序,分析土壤理化性质,揭示不同样地土壤AMF群落的多样性及其影响因素。研究结果表明:(1)土壤样本共得到2961个可操作分类单元(OTU),其中属于AMF的OTU为66个;Silva数据库比对发现AMF有7目10科16属24种。AMF总体物种丰度为矿区相邻空旷地土壤>矿区冠下土壤>非矿区冠下土壤>非矿区相邻空旷地土壤,Shannon指数和Simpson指数与该趋势保持一致。(2)矿区土壤AMF群落以内养囊霉属(Entrophospora)等为优势属,非矿区冠下以斗管囊霉属(Funneliformis)等为优势属。稀有内养囊霉(Entrophospora infrequens)是4个样地共有的优势种,该种为广谱生态型种;Archaeospora sp.和Paraglomerales sp.为矿区冠下的优势种,它们对锰胁迫有较强的耐受性;Funneliformis sp.为非矿区冠下的优势种。(3)冗余分析(RDA)表明,AMF的种类和数量受到锰含量、土壤pH值以及全磷含量的显著影响。本研究结果说明AMF种类及多样性受到土壤理化性质的影响;矿区一些耐性AMF的存在提高了AMF多样性,它们有利于逆境条件下植物的生长。  相似文献   
7.
In order to study the effects of temperature enhancement on alpine calcareous grassland species, a warming experiment was carried out in the Berchtesgaden National Park (Southeast Germany, Northern Calcareous Alps) between 2002 and 2004. The study was conducted in stands of the Carex sempervirens and the Carex firma communities; the two most widespread grassland types in the alpine zone of the Northern Calcareous Alps. The temperature of the vegetation stand and the upper soil was passively enhanced using open top chambers (OTCs). The construction of the OTCs was appropriate since temperature was clearly increased while water conditions (humidity, soil water content) were not changed.

By comparing manipulated (temperature enhancement) with non-manipulated plots, the effects of warming on growth and reproduction of selected key species were studied. To test if vegetation response to temperature enhancement is at least partly due to increases in nutrient availability, soil solution concentrations of nitrate and ammonium were analysed.

We found that most of the studied plant species are sensitive to temperature enhancement. Growth and/or reproduction of 12 of the 14 studied species were significantly stimulated by warming. Only two species showed no response; none of the species experienced decreases in growth or reproduction. Dwarf shrubs and graminoids showed a stronger response than herbaceous perennials. A significant effect of warming on nutrient availability could not be detected. The observed response of vegetation is therefore mainly caused by direct and not by indirect temperature effects.  相似文献   

8.
本文用Leslie矩阵模型研究了高寒草甸生态系统牲畜种群结构及动态。模型考虑了更加精确的年龄组转移关系,出栏率是种群波动的主要因子。目前,牲畜种群结构不合理,种群数量不能保持平衡。  相似文献   
9.
Direct effects of climate change on animal physiology, and indirect impacts from disruption of seasonal synchrony and breakdown of trophic interactions are particularly severe in Arctic and Alpine ecosystems. Unravelling biotic from abiotic drivers, however, remains challenging because high‐resolution animal population data are often limited in space and time. Here, we show that variation in annual horn growth (an indirect proxy for individual performance) of 8043 male Alpine ibex (Capra ibex) over the past four decades is well synchronised among eight disjunct colonies in the eastern Swiss Alps. Elevated March to May temperatures, causing premature melting of Alpine snowcover, earlier plant phenology and subsequent improvement of ibex food resources, fuelled annual horn growth. These results reveal dependency of local trophic interactions on large‐scale climate dynamics, and provide evidence that declining herbivore performance is not a universal response to global warming even for high‐altitude populations that are also harvested.  相似文献   
10.
Nitrogen (N) is one of the most important factors limiting plant productivity, and N fixation by legume species is an important source of N input into ecosystems. Meanwhile, N resorption from senescent plant tissues conserves nutrients taken up in the current season, which may alleviate ecosystem N limitation. N fixation was assessed by the 15N dilution technique in four types of alpine grasslands along the precipitation and soil nutrient gradients. The N resorption efficiency (NRE) was also measured in these alpine grasslands. The aboveground biomass in the alpine meadow was 4–6 times higher than in the alpine meadow steppe, alpine steppe, and alpine desert steppe. However, the proportion of legume species to community biomass in the alpine steppe and the alpine desert steppe was significantly higher than the proportion in the alpine meadow. N fixation by the legume plants in the alpine meadow was 0.236 g N/m2, which was significantly higher than N fixation in other alpine grasslands (0.041 to 0.089 g N/m2). The NRE in the alpine meadows was lower than in the other three alpine grasslands. Both the aboveground biomass and N fixation of the legume plants showed decreasing trends with the decline of precipitation and soil N gradients from east to west, while the NRE of alpine plants showed increasing trends along the gradients, which indicates that alpine plants enhance the NRE to adapt to the increasing droughts and nutrient‐poor environments. The opposite trends of N fixation and NRE along the precipitation and soil nutrient gradients indicate that alpine plants adapt to precipitation and soil nutrient limitation by promoting NRE (conservative nutrient use by alpine plants) rather than biological N fixation (open sources by legume plants) on the north Tibetan Plateau.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号