首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   8篇
  国内免费   2篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   10篇
  2005年   10篇
  2004年   5篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   9篇
  1999年   9篇
  1998年   8篇
  1997年   12篇
  1996年   7篇
  1995年   3篇
  1994年   1篇
  1993年   7篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   7篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1974年   2篇
排序方式: 共有153条查询结果,搜索用时 31 毫秒
1.
To investigate the potential for and constraints on the evolution of compensatory ability, we performed a greenhouse experiment using Asclepias syriaca in which foliar damage and soil nutrient concentration were manipulated. Under low nutrient conditions, significant genetic variation was detected for allocation patterns and for compensatory ability. Furthermore, resource allocation to storage was positively, genetically correlated both with compensatory ability and biomass when damaged, the last two being positively, genetically correlated with each other. Thus, in the low nutrient environment, compensatory ability via resource allocation to storage provided greater biomass when damaged. A negative genetic correlation between compensatory ability and plant biomass when undamaged suggests that this mechanism entailed an allocation cost, which would constrain the evolution of greater compensatory ability when nutrients are limited. Under high nutrient conditions, neither compensatory ability nor allocation patterns predicted biomass when damaged, even though genetic variation in compensatory ability existed. Instead, plant biomass when undamaged predicted biomass when damaged. The differences in outcomes between the two nutrient treatments highlight the importance of considering the possible range of environmental conditions that a genotype may experience. Furthermore, traits that conferred compensatory ability did not necessarily contribute to biomass when damaged, demonstrating that it is critical to examine both compensatory ability and biomass when damaged to determine whether selection by herbivores can favor the evolution of increased compensation. Received: 2 April 1999 / Accepted: 21 September 1999  相似文献   
2.
Summary The response to a single defoliation was studied on three clones of Themeda triandra collected in the short, mid, and tall grassland regions of the Serengeti National Park (Tanzania). These sites represent a gradient of decreasing grazing intensity. Growth, allocation pattern, and several morphometric traits were monitored during an 80-day period. Clipped plants of the short and medium clones fully compensated for the reduction of biomass, while plants of the tall clone showed overcompensation. During the first two weeks after clipping, clipped plants showed lower relative growth rates than unclipped ones, whereas the opposite was observed later on. Clipped plants compensated for the removal of leaf area by producing new leaves with lower specific weights and higher nitrogen content. They also produced more, smaller tillers. Although clipped plants mobilized nonstructural carbohydrates from roots and crowns, this did not account for a significant amount of growth. Relative growth rates of unclipped plants of the short clone were higher. The relative growth rate of the short clone diminished less after clipping, but also exhibited the lowest increase later. The tall clone was the most negatively affected early, but showed the highest compensation later. Compared to the other clones, the short ecotype showed many of the characteristics that defoliation induced in each individual of any clone: higher allocation to leaf area production, higher relative growth rate, higher number but smaller size of tillers, and lower leaf specific weights.  相似文献   
3.
Summary We tested the hypothesis that the amount of compensatory growth after defoliation is affected by the level of stress at which plants grow when defoliated and by the length of time for recovery. Growth response to defoliation went from partial compensation when plants were growing at high relative growth rates (RGR) to overcompensation when plants were more stressed and growing at low RGR. Defoliation released plants from the limitation imposed by the accumulation of old and dead tissue and this release overrode the negative effect of biomass loss. Compensatory growth resulted from a higher RGR aboveground that was not associated with a reduction in RGR belowground. Time available for recovery had a major impact on the outcome of defoliation. With a short time for recovery, RGR was decreased by defoliation because an immediate increase in net assimilation rate was overridden by a reduction in the ratio of leaf area to plant weight. After defoliation, this ratio increased quickly due to a larger allocation to leaf growth and lower leaf specific weights, resulting in higher RGR. We conclude that the compensatory response to grazing depends on the type and level of stress limiting growth. Allocation and physiological responses to stress may positively or negatively affect the response to grazing and, simultaneously, grazing may alleviate or aggravate the effects of different types of stress.  相似文献   
4.
B. Muller  E. Garnier 《Oecologia》1990,84(4):513-518
Summary Two grass species, the annual Bromus sterilis and the perennial Bromus erectus, were grown from seeds for 28 days in a hydroponic culture system at 1 and 100 M NO3 - in the nutrient solution. At 100 M NO3 -, the relative growth rate (RGR) of the perennial was 30% lower than that of the annual. This was only the consequence of the higher specific mass of its leaves, since its leaf mass ratio was higher than that of the annual and the unit leaf rates (ULR), calculated on an area basis, were similar for the two species. At 1 M, the RGR of the annual was 50% lower than at 100 M, while that of the perennial was not significantly lower. This was due mainly to a lower ULR for the annual. while for the perennial ULR was the same in both treatments. These differences between the two species were all the more striking in that the differences in total nitrogen concentrations and nitrate reductase activities between the two treatments were very similar for both species. These different responses together with differences in the nitrogen productivity of the two species suggest that the level of nutrient availability may play an important role in the distribution of these Bromus species in natural habitats. Scope: Components of growth and response to nitrate availability in annual and perennial grasses  相似文献   
5.
6.
The population-dynamic functions of seed dispersal   总被引:5,自引:0,他引:5  
Venable  D. L.  Brown  J. S. 《Plant Ecology》1993,(1):31-55
We summarize some of the population-dynamic consequences of the mosaic structure of plant populations for the evolution of seed dispersal. A fairly elaborated set of theoretical ideas exist regarding the evolution of dispersal and we have synthesized some of them in an attempt to make them more accessible to field ecologists. We consider the relationship of these general theoretical ideas to our understanding of fruit and seed dispersal.We develop three related models to describe the similarities and differences in how dispersal functions for risk reduction (bet hedging), escaping the negative consequences of crowding, and escaping high concentrations of relatives. We also briefly discuss directed dispersal as a fourth population-dynamic aspect of dispersal. Dispersal can have a risk-reducing function only when there is global (metapopulation) temporal variance in success. Dispersal to escape the negative consequences of crowding requires only spatial and local temporal environmental variation. Dispersal for escaping high concentrations of relatives requires no environmental variation, but does require genetic population structure. Directed dispersal, defined as non-random into particular patch types contingent on the expectation of local success, is always valuable when possible and represents an advantage independent the others which can occur with random dispersal.In an effort to accommodate for the differences between simple mathematical models and the behavior of complex natural fruit and seed dispersal systems we have discussed the following issues: actual patterns of patch structure and dispersal distance; the implications of plant cosexuality, perenniality, and allocation costs of dispersal structures; and the impact of the detailed nature of density dependence, breeding systems, and genetic structure. We briefly compare the population-dynamic functions of dispersal presented here with the widely cited functions of colonization, escape, and directed dispersal. Finally, we suggest how the theoretical models can be used with field data to estimate the fitness consequences of dispersal.  相似文献   
7.
Spatial and temporal dynamics of biomass allocation within and between organs were investigated in seedlings of two birch species of contrasting successional status. Seedlings of Betula alleghaniensis Britt (yellow birch) and B. populifolia Marsh (gray birch) were grown for 6 weeks at two nutrient levels in rectangular plexiglass containers to allow non-destructive estimates of root growth, production and loss. Leaf area and production were simultaneously monitored. Yellow birch responded more to nutrient level than gray birch in terms of total biomass, shoot biomass, leaf area and root length. Yellow birch also flexibly altered within-organ allocation (specific leaf area, specific root length and specific soil amount). In contrast, gray birch altered between-organ allocation patterns (root length:leaf area and soil amount:leaf area ratios) more than yellow birch in response to nutrient level. Yellow birch showed greater overall root density changes within a very compact root system, while gray birch showed localized root density changes as concentric bands of new root production spread through the soil. Species differ critically in their responses of standing root length and root production and loss rates to nutrient supply. Early successional species such as gray birch are hypothesized to exhibit higher plasticity in varied environments than later successional species such as yellow birch. Our results suggest that different patterns of allocation, within and between plant organs, do not necessarily follow the same trajectories. To characterize thoroughly the nature of functional flexibility through ontogeny, within- and between-organ patterns of allocation must be accounted for.  相似文献   
8.
9.
Aim, Scope, and Background  Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products go through different processes within a refinery. Allocation at the subprocess level (i.e., the refining process level) instead of at the aggregate process level (i.e., the refinery level) is advocated by the International Standard Organization. In this study, we seek a means of allocating total refinery energy use among various refinery products at the level of individual refinery processes. Main Features  We present a petroleum refinery-process-based approach to allocating energy use in a petroleum refinery to petroleum refinery products according to mass, energy content, and market value share of final and intermediate petroleum products as they flow through refining processes within a refinery. The approach is based on energy and mass balance among refining processes within a petroleum refinery. By using published energy and mass balance data for a simplified U.S. refinery, we developed a methodology and used it to allocate total energy use within a refinery to various petroleum products. The approach accounts for energy use during individual refining processes by tracking product stream mass and energy use within a refinery. The energy use associated with an individual refining process is then distributed to product streams by using the mass, energy content, or market value share of each product stream as the weighting factors. Results  The results from this study reveal that product-specific energy use based on the refinery process-level allocation differs considerably from that based on the refinery-level allocation. We calculated well-to-pump total energy use and greenhouse gas (GHG) emissions for gasoline, diesel, LPG, and naphtha with the refinery process-based allocation approach. For gasoline, the efficiency estimated from the refinery-level allocation underestimates gasoline energy use, relative to the process-level based gasoline efficiency. For diesel fuel, the well-to-pump energy use for the process-level allocations with the mass- and energy-content-based weighting factors is smaller than that predicted with the refinery-level allocations. However, the process-level allocation with the market-value-based weighting factors has results very close to those obtained by using the refinery-level allocations. For LPG, the refinery-level allocation significantly overestimates LPG energy use. For naphtha, the refinery-level allocation overestimates naphtha energy use. The GHG emission patterns for each of the fuels are similar to those of energy use. Conclusions  We presented a refining-process-level-based method that can be used to allocate energy use of individual refining processes to refinery products. The process-level-based method captures process-dependent characteristics of fuel production within a petroleum refinery. The method starts with the mass and energy flow chart of a refinery, tracks energy use by individual refining processes, and distributes energy use of a given refining process to products from the process. In allocating energy use to refinery products, the allocation method could rely on product mass, product energy contents, or product market values as weighting factors. While the mass- and energy-content-based allocation methods provide an engineering perspective of energy allocation within a refinery, the market-value-based allocation method provides an economic perspective. The results from this study show that energy allocations at the aggregate refinery level and at the refining process level could make a difference in evaluating the energy use and emissions associated with individual petroleum products. Furthermore, for the refining-process-level allocation method, use of mass — energy content- or market value share-based weighting factors could lead to different results for diesel fuels, LPG, and naphtha. We suggest that, when possible, energy use allocations should be made at the lowest subprocess level — a confirmation of the recommendation by the International Standard Organization for life cycle analyses. Outlook  The allocation of energy use in petroleum refineries at the refining process level in this study follows the recommendation of ISO 14041 that allocations should be accomplished at the subprocess level when possible. We developed a method in this study that can be readily adapted for refineries in which process-level energy and mass balance data are available. The process-level allocation helps reveal some additional energy and emission burdens associated with certain refinery products that are otherwise overlooked with the refinery-level allocation. When possible, process-level allocation should be used in life-cycle analyses.  相似文献   
10.
Models accounting for genetic variation for resistance to herbivores within plant populations often postulate a balance between the costs of that resistance and its benefits. The production of glandular trichomes by Datura wrightii was shown to be costly in a previous one-year study because plants producing glandular trichomes (sticky plants), a factor conferring resistance to some insect herbivores, also produced 45% fewer seeds than plants producing nonglandular trichomes (velvety plants) when grown in a common garden. Because sticky plants tended to be larger than velvety plants but produced fewer seed capsules, we postulated an allocation trade-off in which velvety plants are more reproduction-dominated whereas sticky plants are more growth-dominated. If a greater commitment to vegetative growth eventually allows sticky plants to compensate for reduced seed production, we would expect a reduction or elimination of the cost of resistance over time in this perennial plant. We monitored growth, survival, and seed production of plants from defined crosses of local populations for three years in a common garden when exposed to and protected from herbivores, and with and without supplemental water. The majority of plants exposed to herbivores had died by the end of the study. We used standard life-table methods to determine the net reproductive rate (R0) and the finite rate of increase (lambda) of plants of each trichome type. After three years, when plants were protected from herbivores, sticky plants were 187-245% larger than velvety plants, depending upon irrigation treatment, but sticky plants continued to be less efficient in producing seeds per unit of canopy volume. Even though the total seed production of sticky plants eventually equaled that of velvety plants, the advantage of earlier reproduction by velvety plants increased lambda by 55-230% over that of sticky plants, depending upon herbivore and irrigation treatment. Exposure to herbivores reduced lambda by 69-83%, depending upon plant type and irrigation treatment, whereas supplemental irrigation increased lambda by 29-175%, depending upon plant type and exposure to herbivores. Although there was a large allocation trade-off between growth and reproduction, the benefits of such a trade-off did not emerge before most plants were killed by herbivores. The cost of producing glandular trichomes strictly for herbivore resistance continued to exceed its benefits, and in the absence of other, unmeasured benefits from the suite of life-history characters associated with glandular trichome production, natural selection is expected to eliminate this costly resistance trait from D. wrightii populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号