首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   23篇
  国内免费   25篇
  2023年   4篇
  2022年   2篇
  2021年   3篇
  2020年   9篇
  2019年   8篇
  2018年   9篇
  2017年   21篇
  2016年   8篇
  2015年   19篇
  2014年   30篇
  2013年   19篇
  2012年   19篇
  2011年   8篇
  2010年   14篇
  2009年   31篇
  2008年   39篇
  2007年   23篇
  2006年   20篇
  2005年   9篇
  2004年   15篇
  2003年   10篇
  2002年   10篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   10篇
  1997年   4篇
  1996年   7篇
  1995年   10篇
  1994年   7篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
排序方式: 共有415条查询结果,搜索用时 968 毫秒
1.
Summary To investigate the use of RFLP analysis in the Triticeae, a set of low copy number probes has been isolated from a wheat cDNA library. The probes identify each of the 14 homoeologous chromosome arms of wheat as determined by analysis of DNA fragments hybridizing to the probes in aneuploid lines of Chinese Spring. These probes can be used in RFLP analyses both for the assignment of homoeology of alien chromosomes or arms added to wheat, and for the determination of chromosome dosage in wheat aneuploids. Different chromosomes from various Triticeae species can therefore be followed in a wheat genetic background using a single technique. The potential uses of the set in facilitating the transfer of alien segments into wheat are outlined.  相似文献   
2.
“缺体回交法”选育普通小麦异代换系方法的研究   总被引:12,自引:2,他引:10  
张学勇  李振声 《遗传学报》1989,16(6):420-429
利用从蓝单体自交分离得到的自花结实的4D缺体小麦(缺72180、缺天选15)作母本与3个不同的八倍体小偃麦(小偃784、小偃7631和小偃78829)杂交,再以缺体作为轮回亲本,从F_1或F_2开始连续回交1—2次,在回交中,缺体无论作父本或母本都得到了异代换系,并且发现:(1)在回交过程中,用缺体作母本比作父本更为有效;(2)F_1自交,在F_2群体中选择生长比较正常,染色体数比较少的植株回交,比F_1作母本直接回交效果更好。并对所得的异代换系的特征特性进行了初步的观察研究,发现中间偃麦草(Agropyron intermedium2n=42) 4E染色体(以下用4Ei表示)、长穗偃麦草(Agropyron clongatum 2n=70)的4E染色体(带蓝粒基因,以下用4Ee表示)和4F染色体(带毛叶基因,以下用4Fe表示)均能正常补偿小麦4D染色体。异代换系生长旺盛,育性正常。初步总结了缺体与八倍体小偃麦杂交,回交过程中异代换系的形成规律,证明了“缺体回交法”可以推广应用于八倍体小偃麦等人工合成的新物种,以选育普通小麦异代换系。  相似文献   
3.
Summary Aneuploid stocks, which included Triticum aestivum/alien, disomic, chromosome addition lines, wheat/alien, ditelosomic, chromosome addition lines, and the available aneuploids of Chinese Spring wheat, were used to locate genes that influence milling energy requirement (ME). Genes that affected ME were found on all seven homoeologous chromosome groups. The addition of complete wheat chromosomes 1B, 1D, 2A, 2D, 5B, 6B, 7B and 7D increased ME. Positive effects were also found in specific chromosome arms: 1BS, 2DS, 5AS, 5BS and 6BL. Wheat chromosome 3B conditioned low ME and the gene(s) responsible was located on the short arm. Other negative effects were attributed to wheat chromosome arms 4BL, 4DL, 5DS and 6DS. Alien chromosome additions that conferred high ME included 2H, 5H, 6H and 7H of barley, Hordeum vulgare and 2R, 2R, 4R, 4RL, 6R, 6RL and 7RL of rye, Secale cereale. Those that conferred a low ME included 1H ch of H. chilense, and 6u and 7u of Aegilops umbellulata, 5R and 5RS of S. cereale and 5R m and 5R mS of S. montanum. Although the control of ME is polygenic, there is a major effect of genes located on the short arms of homoeologous group 5 chromosomes.  相似文献   
4.
For the transfer of genes from B. tournefortii (TT) to the allotetraploid oilseed brassicas, B. juncea AABB, B. carinata BBCC and B. napus AACC, B. tournefortii was first crossed with the three basic diploid species, B. campestris (AA), B. nigra (BE) and B. oleracea (CC), to produce the allodiploids TA, TB and TC. These were tetraploidized by colchicine treatment to produce the allotetraploids TTAA, TTBB and TTCC, which were further crossed with B. juncea and B. napus to produce three-genome hybrids with substitution-type genomic configurations: TACC, TBAA and TCAA. These hybrids along with another hybrid TCBB produced earlier, the three allodiploids, their allotetraploids and the four diploid parent species were studied for their male meiotic behaviour. The diploid parent and the allotetraploids (TTAA, TTBB and TTCC) showed regular meiosis although the pollen viability was generally low in the allotetraploids. In the allodiploids (TA, TB and TC) only some end-to-end associations were observed without any clearly discernible chiasmata or exchange points. Chromosomes involved in end-to-end associations were randomly distributed at the metaphase/anaphase-I stages. In contrast, the three-genome hybrids (TACC, TBAA, TCAA and TCBB) showed normal bivalents whose number exceeded the expected bivalent values. Bivalents arising out of homoeologous pairing were indistinguishable from normal pairs by their disjunction pattern but could be distinguished on the basis of the heteromorphy of the homoeologous chromosomes. The three-genome hybrids could be backcrossed to allotetraploid oilseed brassicas as they had some fertility. In contrast, the allodiploids could neither be selfed nor back-crossed. On the basis of their meiotic stability, in terms of more pronounced homoeologous pairing and fertility for backcrossing, the three-genome configurations provide the best possible situation for the introgression of alien genes from the secondary gene pool to the allotetraploid oilseed crops B. juncea, B. napus and B. carinata.  相似文献   
5.
Diploid-like chromosome pairing in polyploid wheat is controlled by several Ph (pairing homoeologous) genes with major and minor effects. Homoeologous pairing occurs in either the absence of these genes or their inhibition by genes from other species (Ph I genes). We transferred Ph I genes from Triticum speltoides (syn Aegilops speltoides) to T. aestivum, and on the basis of further analysis it appears that two duplicate and independent Ph I genes were transferred. Since Ph I genes are epistatic to the Ph genes of wheat, homoeologous pairing between the wheat and alien chromosomes occurs in the F1 hybrids. Using the Ph I gene stock, we could demonstrate homoeologous pairing between the wheat and Haynaldia villosa chromosomes. Since homoeologous pairing occurs in F1 hybrids and no cytogenetic manipulation is needed, the Ph I gene stock may be a versatile tool for effecting rapid and efficient alien genetic transfers to wheat.Contribution no. 93-435-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA  相似文献   
6.
As the first step in the transfer of barely yellow dwarf virus resistance and salt tolerance from decaploid tall wheatgrass (Thinopyrum ponticum) into hexaploid bread wheat (Triticum aestivum L.), octoploid intergeneric hybrids (2n = 8x = 56) were synthesized by crossing the tall wheatgrass cultivar Alkar with wheat cvs. Fukuhokomugi (Fuko) and Chinese Spring. (Fuko x Alkar) F1 hybrids were studied in detail. The F1 hybrids were perennial and generally resembled the male wheatgrass parent with regard to morphological features and gliadin profile. Most hybrids were euploid with 56 chromosomes and showed high chromosome pairing. On an average, in 6 hybrids 83.6% of the complement showed chiasmatic association, some between wheat and wheatgrass chromosomes. Such a high homoeologous pairing would be obtained if Ph1, the major homoeologous pairing suppressor in wheat, was somehow inactivated. Some of the Fuko x Alkar hybrids had high pollen fertility (18.5–42.0% with a mean of 31.5%) and high seed fertility (3–29 seeds wtih a mean of 12.3 seeds per spike), offering excellent opportunities for their direct backcrossing onto the wheat parent.  相似文献   
7.
八倍体小偃麦与普通小麦杂交育种的研究   总被引:12,自引:1,他引:11  
利用八倍体小偃麦与普通小麦杂交,创造了一些异附加系和异代换系,选育出一个特早熟、矮秆、抗病、高产、优质小麦新品种-“早优504”。总结了八倍体小偃麦与普通小麦杂交育种程序。  相似文献   
8.
2019年4-6月,在江苏省西南部句容市郭庄镇虬山,首次发现二色仙人掌(Opuntia cespitosa Rafinesque)归化种群。该种群主要生长在海拔46~90 m的废弃采石场上,分布范围东西长510 m,南北宽260 m,面积约13.26 hm2。二色仙人掌开花结实的成年植株共计910棵,其中最大灌木平卧茎长轴上叶状茎10个,树龄可达10 a,大概在2010年就生长于虬山。在句容虬山采石场关闭时,采石场工作人员可能将盆栽的二色仙人掌就地丢弃,从而导致该归化种群的发展。比较了二色仙人掌与中国仙人掌属已知其余4种归化植物的形态特征,并编制了分种检索表。此外,讨论了二色仙人掌的传播机制及其入侵风险。  相似文献   
9.
10.
Abstract

Seventy phytosociological relevés were performed in 1 m × 1 m plots at 14 study sites spread along sandy shores in northern and southern Sardinia (Italy). The plots were selected in different habitat types (open dunes, native Juniperus woodlands, maquis, and plantations with Acacia, Eucalyptus and Pinus) according to a stratified sampling method in order to investigate impacts deriving from different levels of Carpobrotus spp. cover, dry litter from exotic trees, and other disturbance types. The quantile regression and logistic regression analyses revealed that the reduction in the amount of bryophyte and lichen cover on sand dunes of the study area is caused either by a high cover of Carpobrotus spp. mats or by a high cover of dry exotic litter in dense, unmanaged or poorly managed forest plantations. Additional detrimental effects are often driven by other kinds of man‐made disturbances. Forest management in the coastal areas of Sardinia should be gradually modified to take into account the conservation of bryophytes and lichens. Some of the biological indicators used are quite widespread in the Mediterranean coastal habitats or are exclusively associated with sand dunes; therefore, they can also be conveniently used as indicators of biological impacts in other countries or islands of the same biogeographical region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号