首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16556篇
  免费   1303篇
  国内免费   1410篇
  2024年   43篇
  2023年   265篇
  2022年   464篇
  2021年   658篇
  2020年   656篇
  2019年   745篇
  2018年   646篇
  2017年   552篇
  2016年   557篇
  2015年   599篇
  2014年   860篇
  2013年   1095篇
  2012年   662篇
  2011年   737篇
  2010年   533篇
  2009年   760篇
  2008年   708篇
  2007年   834篇
  2006年   753篇
  2005年   658篇
  2004年   615篇
  2003年   607篇
  2002年   509篇
  2001年   442篇
  2000年   419篇
  1999年   369篇
  1998年   356篇
  1997年   311篇
  1996年   309篇
  1995年   266篇
  1994年   249篇
  1993年   232篇
  1992年   225篇
  1991年   194篇
  1990年   172篇
  1989年   156篇
  1988年   134篇
  1987年   126篇
  1986年   118篇
  1985年   148篇
  1984年   99篇
  1983年   58篇
  1982年   88篇
  1981年   80篇
  1980年   40篇
  1979年   53篇
  1978年   31篇
  1977年   23篇
  1975年   16篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
W D Davies  J Pittard  B E Davidson 《Gene》1985,33(3):323-331
Defective transducing phages carrying aroG, the structural gene for phenylalanine (phe)-inhibitable phospho-2-keto-heptonate aldolase (EC 4.1.2.15; previously known as 3-deoxy-D-arabinoheptulosonate-7-phosphate synthetase[phe]), have been isolated, and DNA from two of these phages has been used to construct a restriction map of the region from att lambda to aroG. A 7.6-kb PstI-HindIII fragment from one of these phages was cloned into pBR322 and shown to contain aroG. The location of aroG within the 7.6 kb was established by subcloning and Tn3 transpositional mutagenesis. A fragment carrying the aroG promoter and operator has been cloned into a high copy number promoter-cloning vector (pMC489), and the resulting aroGpo-LacZ' (alpha) fusion subcloned in a low copy number vector. Strains with this fusion on the low copy number vector exhibit negative regulation of beta-galactosidase expression by both phenylalanine and tryptophan and positive regulation by tyrosine in a tyrR+ background.  相似文献   
2.
It has been proposed that amplification of genes for esterase that provide resistance to insecticides may originate from transposition events. To test this hypothesis, we have constructed a minigene coding for a soluble acetylcholinesterase under the control of a nontissue-specific promoter (hsp70). When introduced into Drosophila, the gene is expressed in all tissues and the extra acetylcholinesterase produced confers a low level of insecticide resistance (twofold). The minigene was mobilized by crossing the initial transformant with a strain providing a source of P-element transposase. After 34 generations of exposure to the organophosphate parathion, we obtained a strain with a higher resistance (fivefold). This strain had only one extra Ace gene, which overexpressed acetylcholinesterase. Thus, following transposition, resistance resulted from the overexpression of a single copy of the gene and not from gene amplification. Received: 9 August 1996 / Accepted: 27 May 1997  相似文献   
3.
The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450.  相似文献   
4.
Abstract Permeabilized cells of Haemophilus influenzae incorporate wall precursors into murein material in an ampicillin-sensitive reaction. In resistant transformants that contain the low antibiotic affinity penicillin-binding proteins (PBPs) 4 and 5, the sensitivity of this incorporation reaction to ampicillin is proportionally lower, suggesting a catalytic role for these proteins in wall synthesis. We conclude that, analogous to the reaction in Escherichia coli , PBPs 4 and 5 of H. influenzae have transpeptidase activity.  相似文献   
5.
The pattern of feeding of Eastern spruce budworm Choristoneura fumiferana (Clem.) (Lepidoptera, Tortricidae) is compared on foliage from white spruce Picea glauca (Moench) Voss. (Pinaceae) trees previously determined to be susceptible and resistant to defoliation by budworm. No differences are observed in electrophysiological responses from taste sensilla to aqueous extracts of the two foliage types, nor is there a preference for either extract type in a choice test. Acetone extracts from the two foliage types are both preferred to a control sucrose solution, although neither elicits a preference relative to the other. These results suggest that there is no difference in phagostimulatory power of internal leaf contents of the two foliage types. Longer‐term observation of feeding behaviour in a no‐choice situation shows no difference in meal duration, confirming the lack of difference in phagostimulatory power. However, on average, intermeal intervals are twice as long on the resistant foliage, leading to an overall lower food consumption during the assay. This result suggests an anti‐digestive or toxic effect of the resistant foliage that slows behaviour and limits food intake. Previous research has shown that waxes of the resistant foliage deter initiation of feeding by the spruce budworm and that this foliage contains higher levels of tannins and monoterpenes. The data suggest that the resistant foliage contains a post‐ingestive second line of defence against the spruce budworm.  相似文献   
6.
7.
Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27Kip1 was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCFSkp2 ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCFSkp2 pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.  相似文献   
8.
9.
10.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号