首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   1篇
  19篇
  2017年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  1999年   1篇
  1998年   2篇
  1995年   2篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
Summary The gill secondary lamellae are generally covered with epithelial cells whose outer surfaces form numerous microvilli. The surface of the primary lamellae is characterised by microridges. A particular type of surface sculpturing seems to be associated with given cell boundaries.Further evidence for the derivation of the air tube and fans which guard its entrance by modification of the basic gill structure has been obtained from both the gross surface architecture and microstructure of the individual cell surfaces. Secondary lamellae are represented by stubby projections which generally have a biserial arrangement. The outer surfaces of the epithelia overlying the capillaries of these respiratory islets are coated with microvilli as in the secondary lamellae. On the other hand, the relatively smooth-surfaced lanes between groups of respiratory islets have a microridged surface similar to that of the primary gill lamellae.It is suggested that previous estimates of surface area, and consequently diffusing capacities of the air-breathing organ, have been low in view of the increased surface, due to both their gross and microstructure. Estimates for gill surface area may need very little correction as the spaces between the microvilli and microridges are probably filled with mucus under normal conditions.We thank Mr. John Clements for his excellent technical assistance and the Department of Botany, Bristol University for the use of their scanning electron microscope  相似文献   
2.
Summary Retinopetal neurons were visualised in the telencephalon and diencephalon of an air-breathing teleost fish, Channa punctata, following administration of cobaltous lysine to the optic nerve. The labelled perikarya (n=45–50) were always located on the side contralateral to the optic nerve that had received the neuronal tracer. The rostral-most back-filled cell bodies were located in the nucleus olfactoretinalis at the junction between the olfactory bulb and the telencephalon. In the area ventralis telencephali, two groups of telencephaloretinopetal neurons were identified near the ventral margin of the telencephalon. The rostral hypothalamus exhibited retrogradely labelled cells in three discrete areas of the lateral preoptic area, which was bordered medially by the nucleus praeopticus periventricularis and nucleus praeopticus, and laterally by the lateral forebrain bundle. In addition to a dorsal and a ventral group, a third population of neurons was located ventral to the lateral forebrain bundle adjacent to the optic tract. The dorsal group of neurons exhibited extensive collaterals; a few extended laterally towards the lateral forebrain bundle, whereas others ran into the dorsocentral area of the area dorsalis telencephali. A few processes extended via the anterior commissure into the telencephalon ipsilateral to the optic nerve that had been exposed to cobaltous lysine. However, the ventral cell group did not possess collaterals. In the diencephalon, retinopetal cells were visualised in the nucleus opticus dorsolateralis located in the pretectal area; these were the largest retinopetal perikarya of the brain. The caudal-most nucleus that possessed labelled somata was the retinothalamic nucleus; it contained the largest number of retinopetal cells. The limited number of widely distributed neurons in the forebrain, some with extensive collaterals, might participate in functional integration of different brain areas involved in feeding, which in this species is influenced largely by taste, not solely by vision.  相似文献   
3.
Synopsis Anabas testudineus were treated with non lethal levels of metacid-50 (0.106 ppb) and carbaryl (1.66 ppm) for 90 days covering the pre-spawning and spawning phases of the annual reproductive cycle. The main purpose of the present work was to identify the effects of metacid-50 and carbaryl on the gonado somatic index (GSI) and ovarian and plasma estrogen level. There was no alteration in GSI until 15 days, initiating the inhibition on day 20 which further intensified from 20 to 90 days of exposure. Plasma and ovarian estrogen level significantly increased up to 15 days of exposure followed by a decline till the end of the experiment. It is noteworthy that the effect of pesticides on GSI is reflected in the ovarian estrogen level. This highlights the fact that at short-term exposures the nonlethal levels of pesticides have no inhibitory effect while at long-term exposure, the pesticides have potent inhibitory effect on the reproduction of fish.  相似文献   
4.
The induction pattern of urea cycle enzymes and the rate of urea-N excretion were studied with relation to ammonia load in the perfused liver of a freshwater ammoniotelic teleost, Heteropneustes fossilis, when infused with different concentrations of ammonium chloride for 60 min. Both urea-N excretion and uptake of ammonia by the perfused liver were found to be a saturable process. The Vmax of urea-N excretion (0.45 μmol/g liver/min) was obtained at ammonium chloride addition of 1.18 μmol/g liver/min. The maximum induction of carbamyl phosphate synthetase (ammonia dependent), 200%, and of ornithine transcarbamylase, 120%, was seen by the addition of 0.58 μmol/g liver/min, and for argininosuccinate synthetase and argininosuccinate lyase of 150% and 115%, respectively, by the addition of 2.8 μmol/g liver/min of ammonium chloride. However, arginase activity did not alter in any of the concentrations of ammonium chloride added. An increase of ammonia load of 3–5 μmol/g wet wt from the physiological level in the perfused liver was sufficient to initiate and to cause maximum induction of most of the urea cycle enzymes activitty. These results further confirm the capacity of transition from ammoniotelism to ureotelism in this unique freshwater air-breathing teleost to tolerate a very high ambient ammonia.  相似文献   
5.
The jeju, Hoplerythrinus unitaeniatus, is equipped with a modified part of the swim bladder that allows aerial respiration. On this background, we have evaluated its respiratory and cardiovascular responses to aquatic hypoxia. Its aquatic O2 uptake (V(O2)) was maintained constant down to a critical P(O2) (P(cO2)) of 40 mm Hg, below which V(O2) declined linearly with further reductions of P(iO2). Just below P(cO2), the ventilatory tidal volume (V(T)) increased significantly along with gill ventilation (V(G)), while respiratory frequency changed little. Consequently, water convection requirement (V(G)/V(O2)) increased steeply. The same threshold applied to cardiovascular responses that included reflex bradycardia and elevated arterial blood pressure (P(a)). Aerial respiration was initiated at water P(O2) of 44 mm Hg and breathing episodes and time at the surface increased linearly with more severe hypoxia. At the lowest water P(O2) (20 mm Hg), the time spent at the surface accounted for 50% of total time. This response has a character of a temporary emergency behavior that may allow the animal to escape hypoxia.  相似文献   
6.
The purpose of this study was to investigate the characteristics of carbonic anhydrase (CA) and the Cl/HCO3 exchanger (Band 3; AE1) in the erythrocytes of bowfin (Amia calva), a primitive air-breathing fish, in order to further understand the strategies of blood CO2 transport in lower vertebrates and gain insights into the evolution of the vertebrate erythrocyte proteins, CA and Band 3. A significant amount of CA activity was measured in the erythrocytes of bowfin (70 mmol CO2 min−1 ml−1), although it appeared to be lower than that in the erythrocytes of teleost fish. The turnover number (Kcat) of bowfin erythrocyte CA was intermediate between that of the slow type I CA isozyme in agnathans and elasmobranchs and the fast type II CA in the erythrocytes of the more recent teleost fishes, but the inhibition properties of bowfin erythrocyte CA were similar to the fast mammalian CA isozyme, CA II. In contrast to previous findings, a plasma CA inhibitor was found to be present in the blood of bowfin. Bowfin erythrocytes were also found to possess a high rate of Cl/HCO3 exchange (6 nmol HCO3 s−1 cm−2) that was sensitive to DIDS. Visualization of erythrocyte membrane proteins by SDS-PAGE revealed a major band in the 100 kDa range for the trout, which would be consistent with the anion exchanger. In contrast, the closest major band for the membranes of bowfin erythrocytes was around the 140 kDa range. Taken together, these results suggest that the strategy for blood CO2 transport in bowfin is probably similar to that in most other vertebrates despite several unique characteristics of erythrocyte CA and Band 3 in these primitive fish.  相似文献   
7.
The influence of feeding on the surfacing frequency of the air-breathing fishPolyacanthus cupanus was investigated. Feeding increased the surfacing and swimming activities. Food conversion, maintenance requirements and energy spent in swimming and surfacing were measured under different feeding regimes.  相似文献   
8.
In the tropics, air-breathing fishes can be exposed to environmental ammonia when stranded in puddles of water during the dry season, during a stay inside a burrow, or after agricultural fertilization. At low concentrations of environmental ammonia, NH3 excretion is impeded, as in aerial exposure, leading to the accumulation of endogenous ammonia. At high concentrations of environmental ammonia, which results in a reversed NH3 partial pressure gradient (PNH3), there is retention of endogenous ammonia and uptake of exogenous ammonia. In this review, several tropical air-breathing fishes (giant mudskipper, African catfish, oriental weatherloach, swamp eel, four-eyed sleeper, abehaze and slender African lungfish), which can tolerate high environmental ammonia exposure, are used as examples to demonstrate how eight different adaptations can be involved in defence against ammonia toxicity. Four of these adaptations deal with ammonia toxicity at branchial and/or epithelial surfaces: (1) active excretion of NH4+; (2) lowering of environmental pH; (3) low NH3 permeability of epithelial surfaces; and (4) volatilization of NH3, while another four adaptations ameliorate ammonia toxicity at the cellular and subcellular levels: (5) high tolerance of ammonia at the cellular and subcellular levels; (6) reduction in ammonia production; (7) glutamine synthesis; and (8) urea synthesis. The responses of tropical air-breathing fishes to high environmental ammonia are determined apparently by behavioural adaptations and the nature of their natural environments.Communicated by I.D. Hume  相似文献   
9.
The present study analyzes the respiratory responses of the neotropical air-breathing fish Hoplosternum littorale to graded hypoxia and increased sulfide concentrations. The oxygen uptake (VO2), critical O2 tension (PcO2), respiratory (fR) and air-breathing (fRA) frequencies in response to graded hypoxia were determined for fish acclimated to 28 degrees C. H. littorale was able to maintain a constant VO2 down to a PcO2 of 50 mm Hg, below which fish became dependent on the environmental O2 even with significant increases in fR. The fRA was kept constant around 1 breath h(-1) above 50 mm Hg and increased significantly below 40 mm Hg, reaching maximum values (about 4.5 breaths h(-1)) at 10 mm Hg. The lethality to sulfide concentrations under normoxic and hypoxic conditions were also determined along with the fRA. For the normoxic fish the sulfide lethal limit was about 70 microM, while in the hypoxic ones this limit increased to 87 muM. The high sulfide tolerance of H. littorale may be attributed to the air-breathing capability, which is stimulated by this compound.  相似文献   
10.
The Australian Yabby Cherax destructor voluntarily emerges from water to breathe air with increased frequency as water PO2 decreases. When the water PO2 declined below 2.7 kPa the crayfish spent >50% of time breathing air. The respiratory gas transport, acid-base, ionic and energetic status were quantified in simulations of this emersion behaviour to determine the benefits that the crayfish may gain from switching to air-breathing. C. destructor initially showed an elevated O2 uptake rate on emerging from hypoxic water, but after 1 h the O2 uptake rate was not different from that of crayfish in normoxic water. During 3 h of air breathing, subsequent to 2.7 kPa aquatic hypoxia, the haemolymph PO2 increased while oxygen content was essentially unchanged, although cardiac output increased 5-fold. The haemolymph PCO2 increased from 0.44 to 1.21 kPa after 3 h while the CO2 content increased from 3.47 to 8.66 mmol · l−1 and the pH decreased from 7.73 to 7.57 after 1 h in air. In air C. destructor eventually achieved an O2 uptake rate similar to that achieved in water. A general hyperglycaemia occurred without anaerobiosis. In air-breathing C. destructor, small changes in lactate appear to offset the decrease in haemocyanin-O2 affinity caused by acid Bohr shift. During air-breathing, decreased haemocyanin-O2 affinity assisted in maintaining O2 diffusion into the tissues, but the ATP content of the tail muscle decreased so that after 3 h in air the energy charge was only 0.59. The data are consistent with a specific depression of the Emden-Meyerhof pathway, preventing either lactate formation or oxidative phosphorylation in the tail muscle, despite a concomitant glycogenolysis. Accepted: 26 February 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号