首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2020年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
During macroautophagy/autophagy, SQSTM1/p62 plays dual roles as a key mediator of cargo selection and as an autophagic substrate. SQSTM1 links N-degrons and/or ubiquitinated cargoes to the autophagosome by forming homo- or hetero-oligomers, although its N-degron recognition and oligomerization mechanisms are not well characterized. We recently found that SQSTM1 is a novel type of N-recognin whose ZZ domain provides a negatively-charged binding pocket for Arg-charged N-degron (Nt-Arg), a prototype type-1 substrate. Although differences in binding affinity exist for each N-degron, SQSTM1 also interacts with type-2 N-degrons, such as Nt-Tyr and Nt-Trp. Intriguingly, interactions between SQSTM1’s ZZ domain and various N-degrons are greatly influenced by pH-dependent SQSTM1 oligomerization via its PB1 domain. Because cellular pH conditions vary from neutral to acidic depending on the stage of autophagy, the pH-dependent regulation of SQSTM1’s oligomerization must be tightly coupled with the autophagic process.  相似文献   
2.
ABSTRACT

Genetic screens have identified two sets of genes that act at distinct steps of basal autophagy in higher eukaryotes: the pan-eukaryotic ATG genes and the metazoan-specific EPG genes. Very little is known about whether these core macroautophagy/autophagy genes are differentially employed during multicellular organism development. Here we analyzed the function of core autophagy genes in autophagic removal of SQST-1/SQSTM1 during C. elegans development. We found that loss of function of genes acting at distinct steps in the autophagy pathway causes different patterns of SQST-1 accumulation in different tissues and developmental stages. We also identified that the calpain protease clp-2 acts in a cell context-specific manner in SQST-1 degradation. clp-2 is required for degradation of SQST-1 in the hypodermis and neurons, but is dispensable in the body wall muscle and intestine. Our results indicate that autophagy genes are differentially employed in a tissue- and stage-specific manner during the development of multicellular organisms.

Abbreviations: ATG: autophagy related; CLP: calpain family; EPG: ectopic PGL granules; ER: endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; LGG-1/LC3: LC3, GABARAP and GATE-16 family; MIT: microtubule interacting and transport; PGL: P granule abnormality protein; SQST-1: sequestosome-related; UPS: ubiquitin-proteasome system  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号