首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4302篇
  免费   351篇
  国内免费   241篇
  2024年   5篇
  2023年   86篇
  2022年   101篇
  2021年   144篇
  2020年   165篇
  2019年   249篇
  2018年   236篇
  2017年   180篇
  2016年   195篇
  2015年   186篇
  2014年   239篇
  2013年   490篇
  2012年   208篇
  2011年   224篇
  2010年   196篇
  2009年   221篇
  2008年   205篇
  2007年   226篇
  2006年   160篇
  2005年   134篇
  2004年   127篇
  2003年   106篇
  2002年   98篇
  2001年   92篇
  2000年   77篇
  1999年   67篇
  1998年   37篇
  1997年   50篇
  1996年   52篇
  1995年   38篇
  1994年   40篇
  1993年   30篇
  1992年   27篇
  1991年   24篇
  1990年   25篇
  1989年   13篇
  1988年   16篇
  1987年   13篇
  1986年   24篇
  1985年   12篇
  1984年   13篇
  1983年   12篇
  1982年   8篇
  1981年   6篇
  1980年   5篇
  1979年   7篇
  1978年   4篇
  1977年   6篇
  1975年   4篇
  1974年   5篇
排序方式: 共有4894条查询结果,搜索用时 31 毫秒
1.
An upsurge in African horse sickness (AHS) in the Eastern Cape, South Africa, from 2006 led to an epidemiological reassessment of the disease there. Light trapping surveys carried out near horses, donkeys and zebras in 2014–2016 collected 39 species of Culicoides midge (Diptera: Ceratopogonidae) that are potential vectors of AHS. To establish if these midges fed on equids, DNA sequences were obtained from the gut contents of 52 female midges (35 freshly blood‐fed, 13 gravid and four parous), representing 11 species collected across 11 sites. Culicoides leucostictus fed on all three equids. Culicoides bolitinos, Culicoides imicola and Culicoides magnus fed on both horses and donkeys. Culicoides onderstepoortensis fed on donkeys, and Culicoides similis and Culicoides pycnostictus fed on zebras. Bloodmeals from cows, pigs, warthogs, impalas and a domestic dog were also identified in various species, but none of the midges tested had fed on birds. These results contribute to knowledge of the vectorial capacity of several species of Culicoides with regard to AHS in the Eastern Cape and point to potential reservoir hosts, of which donkeys, zebras and domestic dogs have previously been found to harbour AHS. Blood‐fed midges were also obtained throughout winter, indicating the potential for endemic AHS in the province.  相似文献   
2.
3.
Emerging infectious diseases threaten a wide diversity of animals, and important questions remain concerning disease emergence in socially structured populations. We developed a spatially explicit simulation model to investigate whether—and under what conditions—disease-related mortality can impact rates of pathogen spread in populations of polygynous groups. Specifically, we investigated whether pathogen-mediated dispersal (PMD) can occur when females disperse after the resident male dies from disease, thus carrying infections to new groups. We also examined the effects of incubation period and virulence, host mortality and rates of background dispersal, and we used the model to investigate the spread of the virus responsible for Ebola hemorrhagic fever, which currently is devastating African ape populations. Output was analyzed using regression trees, which enable exploration of hierarchical and non-linear relationships. Analyses revealed that the incidence of disease in single-male (polygynous) groups was significantly greater for those groups containing an average of more than six females, while the total number of infected hosts in the population was most sensitive to the number of females per group. Thus, as expected, PMD occurs in polygynous groups and its effects increase as harem size (the number of females) increases. Simulation output further indicated that population-level effects of Ebola are likely to differ among multi-male–multi-female chimpanzees and polygynous gorillas, with larger overall numbers of chimpanzees infected, but more gorilla groups becoming infected due to increased dispersal when the resident male dies. Collectively, our results highlight the importance of social system on the spread of disease in wild mammals.  相似文献   
4.
Accurate and complete reporting of study methods, results and interpretation are essential components for any scientific process, allowing end-users to evaluate the internal and external validity of a study. When animals are used in research, excellence in reporting is expected as a matter of continued ethical acceptability of animal use in the sciences. Our primary objective was to assess completeness of reporting for a series of studies relevant to mitigation of pain in neonatal piglets undergoing routine management procedures. Our second objective was to illustrate how authors can report the items in the Reporting guidElines For randomized controLled trials for livEstoCk and food safety (REFLECT) statement using examples from the animal welfare science literature. A total of 52 studies from 40 articles were evaluated using a modified REFLECT statement. No single study reported all REFLECT checklist items. Seven studies reported specific objectives with testable hypotheses. Six studies identified primary or secondary outcomes. Randomization and blinding were considered to be partially reported in 21 and 18 studies, respectively. No studies reported the rationale for sample sizes. Several studies failed to report key design features such as units for measurement, means, standard deviations, standard errors for continuous outcomes or comparative characteristics for categorical outcomes expressed as either rates or proportions. In the discipline of animal welfare science, authors, reviewers and editors are encouraged to use available reporting guidelines to ensure that scientific methods and results are adequately described and free of misrepresentations and inaccuracies. Complete and accurate reporting increases the ability to apply the results of studies to the decision-making process and prevent wastage of financial and animal resources.  相似文献   
5.
  1. Animal behavior is elicited, in part, in response to external conditions, but understanding how animals perceive the environment and make the decisions that bring about these behavioral responses is challenging.
  2. Animal heads often move during specific behaviors and, additionally, typically have sensory systems (notably vision, smell, and hearing) sampling in defined arcs (normally to the front of their heads). As such, head‐mounted electronic sensors consisting of accelerometers and magnetometers, which can be used to determine the movement and directionality of animal heads (where head “movement” is defined here as changes in heading [azimuth] and/or pitch [elevation angle]), can potentially provide information both on behaviors in general and also clarify which parts of the environment the animals might be prioritizing (“environmental framing”).
  3. We propose a new approach to visualize the data of such head‐mounted tags that combines the instantaneous outputs of head heading and pitch in a single intuitive spherical plot. This sphere has magnetic heading denoted by “longitude” position and head pitch by “latitude” on this “orientation sphere” (O‐sphere).
  4. We construct the O‐sphere for the head rotations of a number of vertebrates with contrasting body shape and ecology (oryx, sheep, tortoises, and turtles), illustrating various behaviors, including foraging, walking, and environmental scanning. We also propose correcting head orientations for body orientations to highlight specific heading‐independent head rotation, and propose the derivation of O‐sphere‐metrics, such as angular speed across the sphere. This should help identify the functions of various head behaviors.
  5. Visualizations of the O‐sphere provide an intuitive representation of animal behavior manifest via head orientation and rotation. This has ramifications for quantifying and understanding behaviors ranging from navigation through vigilance to feeding and, when used in tandem with body movement, should provide an important link between perception of the environment and response to it in free‐ranging animals.
  相似文献   
6.
7.
8.
9.
The animal health and welfare status in European organic dairy production does not in all aspects meet the organic principles and consumers’ expectations and needs to be improved. To achieve this, tailored herd health planning, targeted to the specific situation of individual farms could be of use. The aim of this study was to apply herd health planning in a structured participatory approach, with impact matrix analysis, not previously used in this context, in European organic dairy farms and to assess changes in animal health and welfare. Herd health planning farm visits were conducted on 122 organic dairy farms in France, Germany and Sweden. The farmer, the herd veterinarian and/or an advisor took part in the farm discussions. The researcher served as facilitator. Baseline data on the animal health status of the individual farm, collected from national milk recording schemes, were presented as an input for the discussion. Thereafter a systematic impact matrix analysis was performed. This was to capture the complexity of individual farms with the aim to identify the farm-specific factors that could have a strong impact on animal health. The participants (i.e. farmer, veterinarian and advisor) jointly identified areas in need of improvement, taking the health status and the interconnected farm system components into account, and appropriate actions were jointly identified. The researcher took minutes during the discussions, and these were shared with the participants. No intervention was made by the researcher, and further actions were left with the participants. The number of actions per farm ranged from 0 to 22. The change in mortality, metabolic diseases, reproductive performance and udder health was assessed at two time points, and potential determinators of the change were evaluated with linear regression models. A significant association was seen between change in udder health, as measured by the somatic cell count, and country. At the first follow-up, a significant association was also found between change in the proportion of prolonged calving interval and the farmers’ desire to improve reproductive health as well as with an increase in herd size, but this was not seen at the second follow-up. The degree of implementation of the actions was good (median 67%, lower quartile 40%, upper quartile 83%). To conclude, the degree of implementation was quite high, improvement of animal health could not be linked to the herd health planning approach. However, the approach was highly appreciated by the participants and deserves further study.  相似文献   
10.
  1. Plant–animal interactions are diverse and widespread shaping ecology, evolution, and biodiversity of most ecological communities. Carnivorous plants are unusual in that they can be simultaneously engaged with animals in multiple mutualistic and antagonistic interactions including reversed plant–animal interactions where they are the predator. Competition with animals is a potential antagonistic plant–animal interaction unique to carnivorous plants when they and animal predators consume the same prey.
  2. The goal of this field study was to test the hypothesis that under natural conditions, sundews and spiders are predators consuming the same prey thus creating an environment where interkingdom competition can occur.
  3. Over 12 months, we collected data on 15 dates in the only protected Highland Rim Wet Meadow Ecosystem in Kentucky where sundews, sheet‐web spiders, and ground‐running spiders co‐exist. One each sampling day, we attempted to locate fifteen sites with: (a) both sheet‐web spiders and sundews; (b) sundews only; and (c) where neither occurred. Sticky traps were set at each of these sites to determine prey (springtails) activity–density. Ground‐running spiders were collected on sampling days. DNA extraction was performed on all spiders to determine which individuals had eaten springtails and comparing this to the density of sundews where the spiders were captured.
  4. Sundews and spiders consumed springtails. Springtail activity–densities were lower, the higher the density of sundews. Both sheet‐web and ground‐running spiders were found less often where sundew densities were high. Sheet‐web size was smaller where sundew densities were high.
  5. The results of this study suggest that asymmetrical exploitative competition occurs between sundews and spiders. Sundews appear to have a greater negative impact on spiders, where spiders probably have little impact on sundews. In this example of interkingdom competition where the asymmetry should be most extreme, amensalism where one competitor experiences no cost of interaction may be occurring.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号