首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2001年   1篇
  1993年   1篇
  1990年   1篇
  1987年   1篇
  1985年   3篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae   总被引:7,自引:0,他引:7  
The presence of active mitochondria and oxidative metabolism is shown to be essential to maintain low inhibition levels by ethanol of the growth rate (), fermentation rate (v) or respiration rate () of Saccharomyces cerevisiae wild type strain S288C. Cells which have respiratory metabolism show K i (ethanol inhibition constant) values for , v and , higher (K i>1 M) than those of petite mutants or grande strains grown in anaerobiosis (K i=0.7 M). In addition, the relationship between or v and ethanol concentration is linear in cells with respiratory metabolism and exponential in cells lacking respiration. When functional mitochondria are transferred to petite mutants, the resulting strain shows K i values similar to those of the grande strain and the inhibition of and v by increasing ethanol concentrations becomes linear.  相似文献   
3.
The specific activities of the tricarboxylic acid (TCA) cycle enzymes in Thiobacillus versutus were invariably lower after aerobic growth as compared to denitrifying growth in acetate- or succinate-limited chemostat cultures. Of the glyoxylate cycle enzymes, isocitrate lyase (ICL) activity was nil during aerobic and 76 nmol·min-1·mg-1 protein during denitrifying growth on acetate whereas malate synthase (MS) did not change. In succinate-grown cells ICL was always near nil. The change in ICL and MS was followed after pulse additions of acetate and nitrate to an aerobic acetate-limited chemostat culture made anaerobic prior to the first pulse. ICL remained nil during denitrifying growth after the first pulse but increased to 47 and 81 nmol ·min-1·mg-1 protein after the second and third pulse, respectively. MS remained unaltered. The appearance of ICL was dependent upon de novo protein synthesis. During transition in a steady state culture on acetate from oxygen to nitrate as terminal electron acceptor, denitrifying growth started after 0.6 volume replacements. The resumption of growth was concomitant with an increase in TCA cycle enzyme activities. ICL was observed only after two volume replacements. During the reverse transition, ICL disappeared at a rate twice the dilution rate. SDS polyacrylamide gelectrophoresis of cell-free extracts containing ICL showed a major protein band with a Rf value identical to purified ICL and a mol·wt. of 60,000. ICL from T. versutus was inhibited by 1.5 mM itaconate but not by 10 mM phosphoenolpyruvate. Its activity was dependent upon the presence of Mg2+ and cysteine.Abbreviations TCA Tricarboxylic acid - ICL isocitrate lyase - MS malate synthase - FPLC fast protein liquid chromatography - maximum specific oxygen consumption rate  相似文献   
4.
Depending on the availability of oxygen, Escherichia coli is able to switch between aerobic respiratory metabolism and anaerobic mixed acid fermentation. An important, yet understudied, metabolic mode is the micro-aerobic metabolism at intermediate oxygen availabilities. The relationship between oxygen input, physiology and gene expression of E. coli MG1655 and two isogenic mutants lacking succinate dehydrogenase (SDH) and fumarate reductase (FRD) activities was analyzed at different aerobiosis levels. Growth rate and cell yield were very similar to the parent strain. By-product formation was altered in the sdhC mutant to higher acetic acid and glutamate production in batch cultures. In continuous cultures with defined oxygen input gene expression analysis revealed a dependency of many catabolic genes to aerobiosis. Acetate excretion was still detectable under aerobic conditions in the sdhC mutant; the frdA mutant lacked anaerobic succinate excretion. Anaerobic repression of the sdh operon was diminished in the frdA strain, possibly to allow SDH to partially replace FRD. The experiments illustrate the remarkable adaptability of E. coli physiology—to compensate for the absence of important metabolic genes by altering carbon flux and/or gene expression such that there are only minor changes in growth capability across the aerobiosis range.  相似文献   
5.
The pH in the cytoplasm of aerobic and anaerobic cells of the green algae Chlorella fusca and Chlorella vulgaris was determined in dependence on the pH of the external medium, which was varied between pH 3 and pH 10. In aerobic cells of both species the cytoplasmic pH is maintained at a value above 7.2 even at an external pH of 3 and below 7.8 at an external pH of 10. In anaerobic cells the cytoplasmic pH shows linear dependence on external pH in the range of pH 6 to 9 (cytoplasmic pH 6.9 to 7.2), while below an external pH of 6 cytoplasmic pH is maintained at about 6.5.Abbreviations CCCP Carbonylcyanide-m-chlorophenyl-hydrazone - EDTA Ethylendiaminetetraacetic acid - MES 2-(N-Morpholino)-ethanesulfonic acid - MOPSO 3-(N-Morpholino)-2-hydroxy-propanesulfonic acid - NMR Nuclear Magnetic Resonance - pH cyt cytoplasmic pH - pH ex external pH - PIPES Piperazine-N,N-bis(2-ethanesulfonic acid) - PPi Pyrophosphate - PP1, PP2, PP3 1st, 2nd, 3rd phosphate group of polyphosphates - PP4 core phosphate groups of polyphosphates - TRIS Tris-hydroxymethyl-aminomethane  相似文献   
6.
Endogenous nitrate loss as an assay for nitrate reduction in vivo   总被引:2,自引:0,他引:2  
An in vivo assay method for nitrate reduction is proposed, based on the use of endogenous nitrate rather than on the accumulation of nitrite. Loss of endogenous nitrate and accumulation of nitrite were studied in barley (Hordeum vulgare L. cv. Gars Clipper ex Napier) leaves. Leaf sections were incubated in the dark in a gaseous environment of air or N2. Nitrate disappeared under both conditions, the highest loss being observed in tissue under anaerobiosis. Nitrite accumulated only in leaf sections under anaerobiosis, but the amount of nitrite accumulated was much lower than the amount of nitrate lost. A comparative study of the capacity of barley leaf sections to use endogenous nitrate and accumulate nitrite showed that both activities were dependent on temperature in a manner characteristic of enzymatic reactions. Disappearance of endogenous nitrate increased with increasing levels of nitrate in the tissue.  相似文献   
7.
The effect of Serotonin on carbohydrate metabolism, excreted end products, and adenine nucleotide pools in Schistosoma mansoni was determined following 60 min in vitro incubations under air (= 21% O2) and anaerobic (95% N2:5% CO2) conditions. In the presence of 0.25 mM Serotonin, glucose uptake increased by 82-84% and lactate excretion increased by 77-78%; levels of excreted lactate were significantly higher under aerobic than under anaerobic conditions. The tissue pools of glucose, hexosephosphates, fructose 1,6-bisphosphate, pyruvate, and lactate were significantly increased under anaerobic conditions compared to air incubation; the presence of Serotonin decreased tissue glucose pools and increased the size of the pyruvate and lactate tissue pools. The glycolytic carbon pool was significantly greater under anaerobic than under aerobic conditions, irrespective of Serotonin. Serotonin increased adenosine 5'-diphosphate and adenosine 5'-monophosphate levels under aerobic conditions; neither Serotonin nor gas phase significantly affected total adenine nucleotide levels or the adenylate energy charge. Serotonin increased energy requirements by S. mansoni due to increased muscle contractions; demand was met by enhanced rates of carbohydrate metabolism. Irrespective of gas phase, 74-78% of available carbohydrate was converted to lactate. In the presence of Serotonin, conversion of glucose to lactate was reduced to 63-67%. In view of the requirements by S. mansoni for an abundant supply of glycoprotein and glycolipid precursors for surface membrane renewal, it is suggested that carbohydrate (glucose and glycogen) that was not converted to lactate may have been incorporated into biosynthetic processes leading to membrane synthesis.  相似文献   
8.
Lactobacillus plantarum is a facultative heterofermentative lactic acid bacterium widely used in the production of most fermented food due to its ability to thrive in several environmental niches, including the human gut. In order to cope with different growth conditions, it has developed complex molecular response mechanisms, characterized by the induction of a large set of proteins mainly regulated by HrcA and CtsR repressors as well as by global regulators such as carbon catabolite control protein A (CcpA). In this study, the role of CcpA in the regulation of growth under anaerobiosis and aerobiosis, and the adaptation to aeration in L. plantarum WCFS1 were comprehensively investigated by differential proteomics. The inactivation of ccpA, in both growth conditions, significantly changed the expression level of 76 proteins, mainly associated with carbohydrate and energy metabolism, membrane transport, nucleotide metabolism, protein biosynthesis and folding. The role of CcpA as pleiotropic regulator was particularly evident at the shift from homolactic fermentation to mixed fermentation. Proteomic results also indicated that the mutant strain was more responsive to aerobic growth condition.  相似文献   
9.
Rhodobacter capsulatus was grown chemotrophically in the dark in oxygen-regulated chemostat culture and in the presence of limiting amounts of fixed N. When the oxygen partial pressure was varied, in situ nitrogen fixation occurred only at 1% of air saturation of the medium. By contrast, nitrogenase proteins and their activity measured in the absence of oxygen could be detected up to 30% of air saturation. This revealed that expression of nitrogenase is much less sensitive toward oxygen than the in situ function of the enzyme. At oxygen partial pressures > 1% of air saturation, the degree of modification of the Fe protein of nitrogenase was increased. Light was of no stimulatory effect on both the activity and the expression of nitrogenase. This holds true for growth at 1% or 5% of air saturation. At 5% of air saturation, however, high illumination enhanced the inhibitory effect of oxygen on nitrogenase formation.  相似文献   
10.
One of the historic debates in molecular evolution concerns the strong variation in the genomic guanine–cytosine (GC) content of prokaryotes, which ranges from approximately 20–75%: Is this factor selectively neutral, or is it the result of natural selection? In a previous article published by our group, we showed that inside well-defined taxonomic groups of prokaryotes, strictly aerobic organisms tend to display higher genomic GC levels than strictly anaerobic species. In the present study, we examined the GC content of fragments of DNA obtained from microbial communities along a well-defined environmental gradient: a 4,000-m vertical profile in the North Pacific subtropical gyre. The patterns of GC distribution might be associated with oxygen concentrations in the seawater column. These results give further support to the link between a physiologic trait (aerobic respiration) and genomic GC content.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号