首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   1篇
  2023年   1篇
  2021年   1篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
Subularia aquatica is a small annual aquatic plant in the family Brassicaceae with unique leaf morphology. Its anatomical features were studied using light microscopy. We show that the leaves of S. aquatica are bifacial dorsiventral phyllodes, having adaxial-abaxial polarity, rather than the alternative unifacial type. This morphology is also manifested in the collaterally arranged vascular bundles, which are clearly bifacial. The roots exhibit typical anatomical features of an aquatic plant, including prominent aerenchyma. Although unique within the Brassicaceae, S. aquatica displays many of the same morphological characteristics as other Isoetid life-forms.  相似文献   
2.
Using a 141 F2 population generated from maize inbred B64 × teosinte Zea nicaraguensis cross, quantitative trait loci (QTLs) controlling aerenchyma formation in roots under non-flooding drained soil conditions were identified. Seedlings of Z. nicaraguensis formed clear aerenchyma in the cortex of adventitious roots in non-flooding conditions, whereas the maize inbred line B64 did not. In the F2 population, the capacity to develop aerenchyma exhibited wide and continuous variation, suggesting the trait was controlled by multiple genes. A linkage map was developed using 85 SSR markers, covering 1,224 cM across all ten chromosomes. Composite interval mapping analysis revealed that four QTLs for aerenchyma formation under non-flooding conditions were located to two regions of chromosome 1 (identified as Qaer1.02-3 and Qaer1.07), chromosome 5 (Qaer5.09) and chromosome 8 (Qaer8.06-7), and these explained 46.5% of the total phenotypic variance. The multiple interval mapping approach identified additional QTLs on chromosomes 1 (Qaer1.01) and 5 (Qaer5.01). Using these results, it may be possible to use SSR markers linked to aerenchyma formation in a marker assisted selection approach to introduce aerenchyma formation in drained soil conditions into maize for the eventual development of flooding tolerant maize hybrids.  相似文献   
3.
Waterlogging responses of an emergent freshwater macrophyte, Schoenoplectus scirpoides, were investigated by carrying out laboratory and field experiments. Soil cores containing uniform plants of S. scirpoides were subjected to drained, 1/3 flooded, alternately flooded and drained at weekly intervals, and continuously flooded treatments for 6 months. Mean soil redox potential of the drained soil was 225 ± 29 mV and was significantly lower in the other treatments. Total dry biomass, above‐ground biomass and number of culms in the flooded/drained and flooded treatments were significantly higher than those in the drained and 1/3 flooded treatments. Below‐ground/above‐ground biomass ratios were highest in the drained treatment and significantly lower in the waterlogged treatments. Plant height and the growth rate of culms were least in the drained treatment and significantly higher in the other treatments. Culm specific gravity decreased significantly with increase in soil moisture. In the field study, soil redox potentials were moderately reduced in the inland and streamside sites, while culm elongation rate was significantly higher by 94% in the streamside compared with the inland site. Optimum growth occurred under flooded conditions, suggesting that the species could flourish with increasing water intrusion in estuarine areas, as predicted by global climate change.  相似文献   
4.

Background and Aims

Aerenchyma provides a low-resistance O2 transport pathway that enhances plant survival during soil flooding. When in flooded soil, soybean produces aerenchyma and hypertrophic stem lenticels. The aims of this study were to investigate O2 dynamics in stem aerenchyma and evaluate O2 supply via stem lenticels to the roots of soybean during soil flooding.

Methods

Oxygen dynamics in aerenchymatous stems were investigated using Clark-type O2 microelectrodes, and O2 transport to roots was evaluated using stable-isotope 18O2 as a tracer, for plants with shoots in air and roots in flooded sand or soil. Short-term experiments also assessed venting of CO2 via the stem lenticels.

Key Results

The radial distribution of the O2 partial pressure (pO2) was stable at 17 kPa in the stem aerenchyma 15 mm below the water level, but rapidly declined to 8 kPa at 200–300 µm inside the stele. Complete submergence of the hypertrophic lenticels at the stem base, with the remainder of the shoot still in air, resulted in gradual declines in pO2 in stem aerenchyma from 17·5 to 7·6 kPa at 13 mm below the water level, and from 14·7 to 6·1 kPa at 51 mm below the water level. Subsequently, re-exposure of the lenticels to air caused pO2 to increase again to 14–17 kPa at both positions within 10 min. After introducing 18O2 gas via the stem lenticels, significant 18O2 enrichment in water extracted from roots after 3 h was confirmed, suggesting that transported O2 sustained root respiration. In contrast, slight 18O2 enrichment was detected 3 h after treatment of stems that lacked aerenchyma and lenticels. Moreover, aerenchyma accelerated venting of CO2 from submerged tissues to the atmosphere.

Conclusions

Hypertrophic lenticels on the stem of soybean, just above the water surface, are entry points for O2, and these connect to aerenchyma and enable O2 transport into roots in flooded soil. Stems that develop aerenchyma thus serve as a ‘snorkel’ that enables O2 movement from air to the submerged roots.  相似文献   
5.
The stress of low oxygen concentrations in a waterlogged environment is minimized in some plants that produce aerenchyma, a tissue characterized by prominent intercellular spaces. It is produced by the predictable collapse of root cortex cells, indicating a programmed cell death (PCD) and facilitates gas diffusion between root and the aerial environment. The objective of this study was to characterize the cellular changes take place during aerenchyma formation in root of rice that accompany PCD. Scanning electron microscopy and transmission electron microscopy were used for cellular analysis of roots. Aerenchyma development was observed in both aerobic and flooded conditions. Structural changes in membranes and organelles were examined during development of root cortex cells to compare with previous examples of PCD. There was an initial collapse which started at a specific position in the mid cortex, indicating loss of turgor, and the cytoplasm became more electron dense. These cells were distinct in shape from those located towards the periphery. Mitochondria and endoplasmic reticulum appeared normal at this early stage though the tonoplast lost its integrity. Subsequently it underwent further degeneration while the plasmalemma retracted from the cell wall followed by death of neighboring cells followed a radial path. However, pycnosis of the nucleus, blebbing of plasma membrane and production of apoptotic bodies were not found which in turn indicated nonapoptotic PCD during aerenchyma formation in rice.  相似文献   
6.
Growth and physiological response of woody plants to flooding have been analyzed in detail; however, relatively few studies have been oriented towards the effects of water immersion on cambial activity and wood and bark anatomy of trees that are growing in prolonged flooding conditions. These studies are important to understand the possible effects of predicted sea level rising in mangroves as a consequence of global warming. We studied five species growing in a mangrove forest, sampling three to six trees of each species, in sites that have the longest flooding period. Differences in bark appearance and phloem structure between the submerged stem portion and the portion of the stem above the water surface exist in all species. Although aerenchyma formation and stem hypertrophy are the most common events related to flooding, each type of tissue responded differently. Annona glabra L., Laguncularia racemosa (L.) Gaertn f. and Hibiscus tiliaceus L. developed rythidome. Avicennia germinans (L.) Stearn developed rythidome only in the submerged stem portion. Phyllanthus elsiae Urb., developed one periderm in both stem portions. Species that developed rythidome also developed aerenchyma between periderms and in the phellem. H. tiliaceus and P. elsiae, showed the highest values for anatomical phloem and periderm characters below water surface, while an inverse tendency was observed in A. glabra and L. racemosa, suggesting that prolonged flooding modifies vascular cambium and phellogen differently. Results indicate that sea level rising would affect distribution of the species according to their specific flooding tolerance.  相似文献   
7.
The mode of action of NaCl in terms of cell proliferation and cell death was examined in seminal roots of rice plants (Oryza sativa L.). Salt/sodium chloride was inhibitory to cell number increase and to cell death in cortical tissue, whereas final cortical cell size was the same as in control roots that were not exposed to NaCl. It seems that NaCl may stimulate the transition phase from cell division to cell elongation. Further analysis of the role of NaCl in the suppression of cortical cell death was confined to a delay in the early stage of cell collapse, which was caused by tonoplast disruption, and plasma-membrane destruction. Sodium chloride did not have any effect on the cell-to-cell movement of macromolecules in the root cortex. In-situ hybridization studies indicated that expression of the gene for tonoplast intrinsic protein (rTip1) was localized predominantly in the epidermal and exodermal cells as well as in metaxylem cells in seminal roots. Upon NaCl treatment, the intensity of rTip1 gene expression was raised in the cortical parenchyma, suggesting that salt plays a role in the rapid onset of cell elongation. Received: 2 April 1998 / Accepted: 18 September 1998  相似文献   
8.
After flooding of maize seedlings for fourteen days, their stomata were closed, and total nucleic acid was accumulated in subwater knots before adventitious roots appeared. Aerenchyma were developed and some physiological and morphological changes were induced in fourweek old Zea mays L. seedlings. It aeems possible that the maize seedlings had adapted to the flood circumstances by forming adventitious roots on submerged knots of the stems, which was not only thick and white but also with no root hairs and grew upwards.  相似文献   
9.
Tabebuia cassinoides (Lam.) DC (Bignoniaceae) is a tree species that occurs in swampy areas of the coastal “restinga” in SE Brazil (a coastal sandy plains scrub and forest formation). To elucidate possible adaptive strategies that enable this species to occupy areas subjected to seasonal or perennial waterlogging, metabolic, morphological and growth responses of plants under flooding conditions were studied. The root system of T. cassinoides plants presented elevated amounts of ethanol (10.6 μmol g−1 fresh wt) only in the first 5 d of soil water saturation. The two-fold increase in ethanol production under flooding was corroborated by an increase in ADH activity in the same period. Lactic acid concentrations did not change significantly during four months of flooding treatment. The decrease of alcoholic fermentation under hypoxia was associated with the appearing of new roots. The induction of aerenchyma formation in roots developed under flooding conditions, allowed oxygen transport from the shoot to these organs, thus maintaining an aerobic respiration. We conclude that this characteristic and the capacity to oxidize the rhizosphere are probably responsible for the survival and growth of plants while flooded and for their success in an environment, which restricts the presence of the majority of competing tree species.  相似文献   
10.
A new hypothesis for the benefit of carnivory in plants (i.e., an alternative to aerenchyma for avoiding hypoxia) is evaluated. Root porosity and root depth were quantified in eight carnivorous plant species and 48 non-carnivorous species within a nutrient-poor wet pine savanna in south Mississippi, USA. Carnivorous and non-carnivorous plant species were contrasted with respect to their indication of wetlands, open habitats, and habitats with nutrient-poor soils. We used path analysis, multiplicative regression, and a field experiment to test hypotheses of the effects of soil moisture/hypoxia on the abundance of carnivorous and non-carnivorous plants. All carnivorous plant species produced non-porous roots (or no roots), which were shallower than the average for non-carnivorous plants (6.9 ± 0.95 cm vs. 11.9 ± 0.96 cm), even after correcting for plant size. Root porosity in non-carnivorous species (mean = 22%) was positively correlated with root depth (r = 0.6). Despite lacking porous roots, carnivorous plants were four times more indicative of wetland habitats than were the non-carnivorous species encountered in the wetland studied here. Carnivorous plants, along with non-carnivorous plants with well-developed aerenchyma, were positively associated with the wettest microsites and were more negatively affected by elevating the substrate than were non-carnivorous plants with low-porosity roots. Non-carnivorous plants with shallow roots, while less indicative of wetlands and less abundant in wet microsites of the wet pine savanna than were carnivorous plants, were no less indicative of nutrient-poor soils than were carnivorous plants. Results supported the hypothesis that carnivory is advantageous in wet soils and disadvantageous in drier (including mesic) soils and are more indicative of wetland conditions than of low soil fertility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号