首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1982年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
The Drosophila fat body protein 2 gene (Fbp2) is an ancient duplication of the alcohol dehydrogenase gene (Adh) which encodes a protein that differs substantially from ADH in its methionine content. In D. melanogaster, there is one methionine in ADH, while there are 51 (20% of all amino acids) in FBP2. Methionine is involved in 46% of amino acid replacements when Fbp2 DNA sequences are compared between D. melanogaster and D. pseudoobscura. Methionine accumulation does not affect conserved residues of the ADH-ADHr-FBP2 multigene family. The multigene family has evolved by replacement of mildly hydrophobic amino acids by methionine with no apparent reversion. Its short-term evolution was compared between two Drosophila species, while its long-term evolution was compared between two genera belonging respectively to acalyptrate and calyptrate Diptera, Drosophila and Sarcophaga. The pattern of nucleotide substitution was consistent with an independent accumulation of methionines at the Fbp2 locus in each lineage. Under a steady-state model, the rate of methionine accumulation was constant in the lineage leading to Drosophila, and was twice as fast as that in the calyptrate lineage. Substitution rates were consistent with a slight positive selective advantage for each methionine change in about one-half of amino acid sites in Drosophila. This shows that selection can potentially account for a large proportion of amino acid replacements in the molecular evolution of proteins. Received: 12 December 1994 / Accepted: 15 April 1996  相似文献   
2.
We analyzed the phylogenetic relationship between the species of Lordiphosa and other Drosophilidae using alcohol dehydrogenase (Adh) gene sequences. The phylogenetic trees consistently show that the four species Drosophila kurokawai, D. collinella, D. stackelbergi, and D. clarofinis, which include three species groups of Lordiphosa, form a monophyletic clade. This clade is placed as a sister group to the willistoni and saltans groups of Sophophora. On the other hand, three species of Lordiphosa, D. tenuicauda, D. pseudotenuicauda, and D. acutissima, all of which belong to the tenuicauda group, are not shown to be related to the major Lordiphosa lineage. In the phylogenetic trees, these species are included into the clade comprised of Drosophila and Hirtodrosophila, although it remains uncertain whether the tenuicauda group is a monophyletic group or not. These results indicate that Lordiphosa is polyphyletic and that most of the members of the subgenus have a close relationship to the neotropical groups of Sophophora. The above conclusion is compatible with the hypothesis of Okada (Mushi [1963] 37:79–100) and Lastovka and Máca (Acta Ent Bohemoslov [1978] 75:404–420) that Lordiphosa is most closely related to Sophophora; in contrast, our results contradict the hypothesis of Grimaldi (Bull Am Mus Nat Hist [1990] 197:1–139) that Lordiphosa is a sister group to the genus Scaptomyza. Received: 12 May 1999 / Accepted: 14 April 2000  相似文献   
3.
黄菊  郝莉  刘愫  李林  张文霞  戴灼华 《遗传学报》2002,29(5):417-423
果蝇immigrans种组中的curviceps种亚组是1992年新建立的中国特有果蝇类群。该种亚组中的物种主要分布在中国大陆和台湾。目前除了形态学水平的研究外,还没有其他证据支持建立该种亚组的合理性及其起源和种系发生地位。为了在DNA分子水平上探讨果蝇curviceps种亚组在果蝇immigrans种组中的种系发生地位,从而为今后更深入地研究中国特有果蝇,甚至为果蝇亚属的进化遗传学提供理论依据,测定了immigrans种组5个种亚组(nasuta、immigrans、hypocausta、quadrilineata、curviceps)中12个代表物种的rDNA的ITS1和部分Adh基因的序列。其中ITS1序列的长度为513-587bp,共有191个信息位点;Adh基因片段的长度在714-747bp之间,共99个信息位点。考虑到单个分子提供的信息较少,将两个分子的序列综合起来,组成一个较长的复合序列。分别根据ITS1,Adh和两个分子的复合序列排比(Alignment)结果,和最大简约法和邻接法构建分子系统树,其中根据复合序列构建的系统树与形态学研究结果最为一致。分子树显示curviceps种亚组的特种确定单独形成一个分枝,为种亚组级的分类阶元,支持了形态学将其建立为一个新种亚组。根据Kimura距离,估算了复合分子的替换速率约为每百万年1.48%,进而计算出5个种亚组的分 歧年代。结合各物种的地理分布,推测了immigrans种组的进化历史:curviceps种亚组与quadrilineata种亚组的亲缘关系最近,主要分布在中国南部的温带地区。它们之间的分歧时间大约为3.4百万年,是最年轻的两个种亚组。主要分布在苏门答腊及附近的热带地区的hypocausta种亚组的物种是最早分化出来的,与其他种亚组的分歧时间约为9.2百万年。该结果与形态学和生物地理学研究相吻合。值得一提是的,目前归属仍存在争议的物种D.neohypocausta,在分子系统树中与hypocausta种亚组的物种相距较远,而与immiagrasn种亚组的关系较近,但分枝置信度较低(<50%)。由于还缺乏其他方面的证据,因此D.neohypocausta的归属有待今后的研究来作定论。  相似文献   
4.
The majority of tetraploid peonies are allopolyploids derived from crosses between phylogenetically distinct diploid lineages. Tetraploid Paeonia obovata was previously considered to be an autopolyploid because it is morphologically indistinguishable from the diploid of the same species. The presence of the Adh2 gene in tetraploid P. obovata but the inability to amplify the Adh2 gene from Chinese diploids of P. obovata, however, suggests that the tetraploid was not an autotetraploid derivative of the geographically adjacent diploid populations in China. The Adh gene phylogenies rather suggest that the tetraploid originated from crosses between two geographical races of diploid P. obovata distributed in China and Japan. The intermediate status of tetraploid P. obovata between auto‐ and allopolyploidy highlights the need for population genetic analyses of polyploid origins along the continuous range of genomic divergence. Here we present a model that describes the probabilities of polyploid formation and establishment as a function of genomic divergence between diploid progenitors. The probability of polyploid formation (Pf) is obtained from the multiplication of the probability of production of unreduced gametes (Pg) and the probability of ‘hybridization’ (Ph). Pf stays relatively stable when the genomic divergence is low, and then decreases progressively rapidly with the increase of genomic divergence between diploid progenitors. The probability of polyploid establishment (Pe), which depends on the rate of appearance of stable beneficial gene combinations and the rate of fertility restoration, is positively correlated with the genomic divergence of diploid parents. Multiplication of Pf and Pe gives an overall probability of polyploid origins (Po) that varies continuously along the genomic divergence between diploid progenitors. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 561–571.  相似文献   
5.
The six sibling species of the Neotropical Drosophila willistoni group have a long history in studies of evolutionary biology, yet to date only one molecular study, which used allozymes, has been published on the phylogeny of the group. Here we present a phylogeny of the siblings based on the sequences of two nuclear genes, period (per) and Alcohol dehydrogenase (Adh), as well as the mitochondrial gene Cytochrome oxidase I (COI). Taken individually, only per has a strong phylogenetic signal supporting a well-resolved phylogeny of the group, and this phylogeny is different from that obtained using allozymes. The COI dataset by itself produces trees that disagree with per, and neither that data nor the Adh data have a strong phylogenetic signal, as indicated by low bootstrap values for all analyses. Combining the Adh and COI datasets results in the same tree as per alone. Combining all three genes results in the same topology, which is strongly supported. Two problematic taxa, D. pavlovskiana and a “Carmody strain,” which were identified as potentially separate species based on reproductive isolation, clearly cluster in the phylogenetic analyses within D. paulistorum and D. equinoxialis, respectively. Thus, there appears to be a conflict between the biological species concept and the phylogenetic species concept.  相似文献   
6.
Wang and Althoff (2019) explored the capacity of Drosophila melanogaster to exhibit adaptive plasticity in a novel environment. In a full‐sib, half‐sib design, they scored the activity of the enzyme alcohol dehydrogenase (ADH) and plastic responses, measured as changes in ADH activity across ethanol concentrations in the range of 0–10% (natural variation) and 16% (the novel environment). ADH activity increased with alcohol concentration, and there was a positive association between larval viability and ADH activity in the novel environment. They also reported that families exhibiting greater plasticity had higher larval survival in the novel environment, concluding that ADH plasticity is adaptive. However, the four authors now concur that, since the study estimated plasticity from phenotypic differences across environments using full‐sib families, it is not possible to disentangle the contributions of allele frequency changes at the Adh locus from regulatory control at loci known to influence ADH activity. Selective changes in allele frequencies may thus conflate estimates of plasticity; any type of “plasticity” (adaptive, neutral, or maladaptive) could be inferred depending on allele frequencies. The problem of scoring sib‐groups after selection should be considered in any plasticity study that cannot use replicated genotypes. Researchers should monitor changes in allele frequencies as one mechanism to deal with this issue.  相似文献   
7.
Each of the twelve enzymes for glycolytic fermentation, eleven from Escherichia coli and one from Saccharomyces cerevisiae, have been over-expressed in E. coli and purified with His-tags. Simple assays have been developed for each enzyme and they have been assembled for fermentation of glucose to ethanol. Phosphorus-31 NMR revealed that this in vitro reaction accumulates fructose 1,6-bisphosphate while recycling the cofactors NAD+ and ATP. This reaction represents a defined ATP-regeneration system that can be tailored to suit in vitro biochemical reactions such as cell-free protein synthesis. The enzyme from S. cerevisiae, pyruvate decarboxylase 1 (Pdc1; EC 4.1.1.1), was identified as one of the major ‘flux controlling’ enzymes for the reaction and was replaced with an evolved version of Pdc1 that has over 20-fold greater activity under glycolysis reaction conditions. This substitution was only beneficial when the ratio of glycolytic enzymes was adjusted to suit greater Pdc1 activity.  相似文献   
8.
Populations of Drosophila mojavensis from the deserts of the Baja California peninsula and mainland Mexico utilize different cactus hosts with different alcohol contents. The enzyme alcohol dehydrogenase (ADH) has been proposed to play an important role in the adaptation of Drosophila species to their environment. This study investigates the role of ADH in the adaptation of the cactophilic D. mojavensis to its cactus host. In D. mojavensis and its sibling species, D. arizonae, the Adh gene has duplicated, giving rise to a larval/ovarian form (Adh-1) and an adult form (Adh-2). Studies of sequence variation presented here indicate that the Adh paralogs have followed different evolutionary trajectories. Adh-1 exhibits an excess of fixed amino acid replacements, suggesting adaptive evolution, which could have been a result of several host shifts that occurred during the divergence of D. mojavensis. A 17-bp intron haplotype polymorphism segregates in Adh-2 and has markedly different frequencies in the Baja and mainland populations. The presence of the intron polymorphism suggests possible selection for the maintenance of pre-mRNA structure. Finally, this study supports the proposed Baja California origination of D. mojavensis and subsequent colonization of the mainland accompanied by a host shift.  相似文献   
9.
为研究部分显性的机制,用12个黑腹果蝇醇脱氢酶(DADH)基因内无效突变(Adh^n)体作为材料。这些已知序列伯突变体「包括单碱基置换或基因内小段缺失(9 ̄16个碱基)」,用来分析肽的合成,二聚体的形成和杂二聚体酶活性。杂合体中酶的部分表达和很广范围显性表达(从几乎完全陷性到高度显性)具多重机制。在10%乙醇的高度胁迫下,所有12个Adh^n型果蝇中都观察到醇耐受性的部分显性表达。无效「突变表达的  相似文献   
10.
Summary The nucleotide sequence of theFast-Chateau Douglas isolate of the thermostable alcohol dehydrogenase allele is compared with the sequences of theSlow andFast alleles ofDrosophila melanogaster. Conceptual translation of theFChD sequence indicates that the thermostable polypeptide has the diagnostic FAST amino acid replacement at residue 192 and an additional replacement of serine for proline at residue 214. This suggests aFast origin for the thermostableAdh allele. However, some of the biochemical properties of the FCHD protein resemble those of the SLOW rather than the FAST polypeptides. The serine for proline replacement confers upon the thermostable polypeptide substrate specificities and some kinetic parameters similar to the SLOW protein. The same replacement substitution within the third coding exon also appears to alter the ADH protein concentration to a level similar to the SLOW polypeptide and the probable effect is at the level of mRNA concentration. The low level of nucleotide sequence variation, other than that leading to the amino acid substitution, suggests a recent origin for the thermostable allele. The time since divergence of theFChD sequence fromFast is estimated to be approximately 260,000–470,000 years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号