首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2008年   1篇
  2005年   1篇
  1996年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Oreina cacaliae (Coleoptera, Chrysomelidae) produces in its elytral and pronotal defensive secretion seneciphylline N-oxide together with small amounts of another pyrrolizidine alkaloid tentatively identified as senecionine N-oxide. This is a strong departure from the chemical composition of the defensive secretions in related species, characterized by complex mixtures of cardenolides, synthesized by the beetles from cholesterol. It is suggested that O. cacaliae sequesters the alkaloids from its host-plant, Adenostyles leucophylla. Other specimens of O. cacaliae from far distant populations feeding on Senecio nemorensis, Petasites paradoxus or P. album also produced pyrrolizidine alkaloids, but not O. speciosissima feeding on the same food plants and producing cardenolides. In addition to pyrrolizidine alkaloids, O. cacaliae secretes ethanolamine, which is also found in all the cardenolide-producing species.  相似文献   
2.
Summary We determined in the laboratory the feeding response of two populations of the generalist herbivorous snail Arianta arbustorum (Helicidae) towards the composite Adenostyles alliariae and towards various allelochemicals. These were: a pyrrolizidine alkaloid (PA) extract of Adenostyles leaves; senecionine (a PA present in Adenostyles); retrorsine (a PA not present in Adenostyles) and two sesquiterpene (ST) fractions from Adenostyles: a mixture of the STs adenostylone and neoadenostylone, and deacyladenostylone. Tertiary PAs and PA N-oxides were tested separately. For each allelochemical, we tested whether it was deterrent or whether it induced changes of feeding behaviour (i.e. whether it had pre- or postingestive effects), and whether the effects were more pronounced with younger (smaller) snails. The tertiary PA extract from Adenostyles was deterrent, especially for young snails, but did not induce changes of feeding behaviour. Tertiary PA senecionine was deterrent for young snails only and induced changes of feeding behaviour. Also, consumption of untreated Petasites was higher after this treatment. Tertiary PA retrorsine was not deterrent, but induced changes of feeding behaviour. The PA N-oxides showed no activity against the snails. The mixture of adenostylone and neoadenostylone was deterrent and induced feeding aversions. Deacyladenostylone was highly deterrent, but did not induce changes of feeding behaviour. At the Jura site, PA content of Adenostyles was lower than at the Black Forest site. The snails from Jura consumed much less Adenostyles than the snails from Black Forest, and also ate a little less of the treated leaf discs. The PAs which are encountered by the snails in their natural food plants (PA extract and senecionine) were more deterrent than retrorsine (a novel compound). This suggests that the snails have mechanisms for the rejection of allelochemicals which they encounter in their natural food plants, but not for novel allelochemicals. The results suggest two hypotheses regarding the function of the allelochemicals in Adenostyles: (1) The allelochemicals act mainly on very young snails. (2) PAs render Adenostyles toxic, while STs act as feeding deterrents.  相似文献   
3.
The volatile fraction of the whole plant and separated organs of Adenostyles briquetii Gamisans (syn. Cacalia briquetii; family Asteraceae), an endemic species from Corsica, has been studied by headspace solid-phase microextraction (HS-SPME), GC and GC-MS(EI and CI). A total of 141 components were identified, representing 93% of the entire amount. The volatile fraction was characterised by sesquiterpene hydrocarbons (52.8%) and oxygenated sesquiterpenes (25.9%). The major components were germacrene D (18.5%), zingiberene (12.9%) and beta-oplopenone (10.8%). The influence of HS-SPME parameters on the extraction of family components is reported for the first time.  相似文献   
4.
Oreina cacaliae (Schrank) (Coleoptera: Chrysomelidae) has a 2‐year life cycle that it has to complete within the short warm seasons of the harsh alpine environment. Three years of field observations and experiments revealed that not all beetles overwintered in the soil next to their principal host Adenostyles alliariae (Asteraceae), as was previously assumed, but that many O. cacaliae left their host in autumn and flew to overwintering sites that were extensively sun‐exposed. In spring, these individuals became active 2 months earlier than their conspecifics that had remained in the soil close to the host plant. These early beetles flew from their hibernation sites against the direction of the prevailing wind. After a random landing in snow, they walked to the spring host Petasites paradoxus (Asteraceae) and fed on its floral stalks, the only plant parts present at that time. A few weeks later, they took flight again to locate newly emerging A. alliariae on which they would feed and deposit larvae as did individuals that had overwintered close to A. alliariae. Leaves of A. alliariae contain pyrrolizidine alkaloids (PAs), which the beetles sequester for their own defence. The dominating PA (seneciphylline) was also found to be present in the floral stalks of P. paradoxus. With additional behavioural assays in the field and laboratory, we demonstrated the importance of plant odours in the short‐range host location process. This study reveals a unique hibernation behaviour in which part of the beetle population uses exceptionally warm locations from which they emerge in spring, long before all the snow has melted. This early, but risky emergence allows them to exploit a second, highly suitable host plant, which they locate first by wind‐guided flight and then by odour‐guided walking. The well‐fed beetles then use odour again to move to their principal host plant, on which they reproduce.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号