首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   0篇
  国内免费   1篇
  77篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   8篇
  2013年   5篇
  2012年   8篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2003年   2篇
  2002年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
Abstract: The Pulsinelli-Brierley four-vessel occlusion model was used to study the consequences of hyperglycemic ischemia and reperfusion. Rats were subjected to either 30 min of normo- or hyperglycemic ischemia or 30 min of normo- or hyperglycemic ischemia followed by 60 min of reperfusion. In some animals, 2 mg/kg BN 50739, a platelet-activating factor receptor antagonist, was administered intraarterially either before or after the ischemic insult. The changes in mitochondrial membrane free fatty acid levels, phosphatidylcholine fatty acyl composition, and thiobarbituric acid-reactive material (TBAR) content plus the mitochondrial respiratory control ratio (RCR) were monitored. When the platelet-activating factor antagonist was present during normoglycemia, (a) the mitochondrial free fatty acid release both during and after ischemia was slowed, (b) reacylation of phosphatidylcholine following ischemia was promoted, and (c) TBAR accumulation during and following ischemia was decreased. The detrimental effects of hyperglycemia were muted when BN 50739 was present during ischemia. The RCR was preserved and phosphatidylcholine hydrolysis during ischemia was decreased. TBAR levels were consistently higher in hyperglycemic brain mitochondria both during and after ischemia. The RCR correlated directly with mitochondrial phosphatidylcholine polyunsaturated fatty acid content during ischemia and reperfusion. BN 50739 protection of mitochondrial membranes in brain may be influenced by tissue pH.  相似文献   
2.
Bodo Liedvogel  Hans Kleinig 《Planta》1979,144(5):467-471
Isolated chromoplasts from Narcissus pseudonarcissus flowers contain: a fatty acid synthesizing system; acyl-CoA synthetase (EC 6.2.1.3); glycero-phosphate acyltransferase (EC 2.3.1.15); acylglycero-phosphate acyltransferase; phosphatidate phosphatase (EC 3.1.3.4); diacylglycerol galactosyltransferase (EC 2.4.1.46); and diacylgalactosylglycerol galactosyltransferase, i.e. all enzymatic activities necessary for the synthesis of diacylgalactosylglycerol and diacylgalabiosylglycerol from acetate, HCO - 3 , sn-glycerol 3-phosphate, and UDP-d-galactose. Diacylgalactosylglycerol and diacylgalabiosylglycerol, however, are synthesized from these precursors to only a very low extent in an in vitro system. This is attributed to a specificity of diacylglycerol galactosyltransferase for highly unsaturated diacylglycerols. Specificities of acyltransferase reactions were also found.  相似文献   
3.
4.
Anandamide (=N-arachidonoylethanolamine) is the first discovered endocannabinoid, and belongs to the class of bioactive, long-chain N-acylethanolamines (NAEs). In animal tissues, anandamide is principally formed together with other NAEs from glycerophospholipid by two successive enzymatic reactions: 1) N-acylation of phosphatidylethanolamine to generate N-acylphosphatidylethanolamine (NAPE) by Ca2+-dependent N-acyltransferase; 2) release of NAE from NAPE by a phosphodiesterase of the phospholipase D type (NAPE-PLD). Although these anandamide-synthesizing enzymes were poorly understood until recently, our cDNA cloning of NAPE-PLD in 2004 enabled molecular-biological approaches to the enzymes. NAPE-PLD is a member of the metallo-beta-lactamase family, which specifically hydrolyzes NAPE among glycerophospholipids, and appears to be constitutively active. Mutagenesis studies suggested that the enzyme functions through a mechanism similar to those of other members of the family. NAPE-PLD is widely expressed in animal tissues, including various regions in rat brain. Its expression level in the brain is very low at birth, and remarkably increases with development. Analysis of NAPE-PLD-deficient mice and other recent studies revealed the presence of NAPE-PLD-independent pathways for the anandamide formation. Furthermore, calcium-independent N-acyltransferase was discovered and characterized. In this article, we will review recent progress in the studies on these enzymes responsible for the biosynthesis of anandamide and other NAEs.  相似文献   
5.
6.
Acyltransferase activity of amidase from Bacillus sp. APB-6 was enhanced (24 U) by multiple feedings of N-methylacetamide (70 mM) into the production medium. Hyperinduced whole resting cells of Bacillus sp. APB-6 corresponding to 4 g/L (dry cell weight), when treated with 10 mM DTT (dithiothreitol) resulted in 93% molar conversion of acetamide (300 mM) to acetohydroxamic acid in presence of hydroxylamine-HCl (800 mM) after 30 min at 45 °C in a 1 L reaction mixture. After lyophilization, a 62 g powder containing 34% (wt wt−1) acetohydroxamic acid was recovered. This is the first report where DTT has been used to enhance acyltransfer reaction and such high molar conversion (%) of amide to hydroxamates was recorded at 1 L scale.  相似文献   
7.
Mutations in the gene encoding 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2) have been reported in patients with congenital generalized lipodystrophy (CGL). AGPAT2, a 278 amino acid protein, belongs to the acyltransferase enzyme family, and has two conserved motifs, NHX(4)D and EGTR, involved in the enzymatic activity. The AGPATs catalyze acylation of lysophosphatidic acid (LPA) to phosphatidic acid (PA) during the biosynthesis of glycerophospholipids and triglycerides from glycerol-3-phosphate. The present studies were designed to determine the enzymatic activity of AGPAT2 mutants found in CGL patients to provide a molecular explanation for the phenotype and to obtain additional information about the structure-function relationship of AGPAT2 protein. The enzymatic activities of the wild type AGPAT2 and mutants were determined in cell lysates of overexpressing Chinese hamster ovary cells by measuring the conversion of [(3)H]LPA to [(3)H]PA in the presence of oleoyl-coenzyme A. Whereas, the R68X, 221delGT, 252delMRT, D180fsX251, and V167fsX183 mutants had markedly reduced enzymatic activity (median <15% of the wild type), the mutants, 140delF, G136R, and L228P, retained median activity ranging from 15% to 40% of the wild type enzyme. However, the missense mutant, A239V, had 90% of the wild type activity. We suggest that reduction in AGPAT2 enzymatic activity underlies the loss of adipose tissue in CGL. Our observations reveal an important role of various carboxy-terminal residues in determining the enzymatic activity of AGPAT2.  相似文献   
8.
Of the proteins encoded by the three structural genes of the lac operon, the galactoside acetyltransferase (thiogalactoside transacetylase, LacA, GAT) encoded by lacA is the only protein whose biological role remains in doubt. Here, we briefly note the classical literature that led to the identification and initial characterization of GAT, and focus on more recent results which have revealed its chemical mechanism of action and its membership in a large superfamily of structurally similar acyltransferases. The structural and sequence similarities of several members of this superfamily confirm the original claim for GAT as a CoA-dependent acetyltransferase specific for the 6-hydroxyl group of certain pyranosides, but do not yet point to the identity of the natural substrate(s) of the enzyme.  相似文献   
9.
Enzymes secreted by Legionella pneumophila, such as phospholipases A (PLAs) and glycerophospholipid:cholesterol acyltransferases (GCATs), may target host cell lipids and therefore contribute to the establishment of Legionnaires disease. L. pneumophila possesses three proteins, PlaA, PlaC, and PlaD, belonging to the GDSL family of lipases/acyltransferases. We have shown previously that PlaC is the major GCAT secreted by L. pneumophila and that the zinc metalloproteinase ProA is essential for GCAT activity. Here we characterized the mode of PlaC GCAT activation and determined that ProA directly processes PlaC. We further found that not only cholesterol but also ergosterol present in protozoa was palmitoylated by PlaC. Such ester formations were not induced by either PlaA or PlaD. PlaD was shown here to possess lysophospholipase A activity, and interestingly, all three GDSL enzymes transferred short chain fatty acids to sterols. The three single putative catalytic amino acids (Ser-37, Asp-398, and His-401) proved essential for all PlaC-associated PLA, lysophospholipase A, and GCAT activities. A further four cysteine residues are important for the PLA/GCAT activities as well as their oxidized state, and we therefore conclude that PlaC likely forms at least one disulfide loop. Analysis of cleavage site and loop deletion mutants suggested that for GCAT activation deletion of several amino acids within the loop is necessary rather than cleavage at a single site. Our data therefore suggest a novel enzyme inhibition/activation mechanism where a disulfide loop inhibits PlaC GCAT activity until the protein is exported to the external space where it is ProA-activated.  相似文献   
10.
Protein preparations from seeds and seedlings (cotyledons) of rape (Brassica napus subsp. napus [L.] DC.) catalyzed the transfer of sinapic acid from 1-Osinapoyl--glucose to malate in the formation of O-s-inapoylmalate. The enzyme involved, 1-O-sinapoyl--glucose: l-malate O-sinapoyltransferase (SMT; EC 2.3.1), catalyzes the key step in the overall conversion of the seed constituent sinapine (O-sinapoylcholine) to the accumulating O-sinapoylmalate by way of the intermediate 1-O-sinapoyl--glucose. The present paper describes this phenomenon focussing on SMT activity.Abbreviations Sin-Glc 1-O-sinapoyl--glucose - Sin-Mal O-sinapoylmalate - SMT 1-O-sinapoyl--glucose: l-malate sinapoyltransferase (EC 2.3.1) This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Ontario Ministry of Agriculture and Food.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号